Loading…

A Three Dimensional Signed Small Ball Inequality

The Small Ball Inequality is a conjectural lower bound on sums the L-infinity norm of sums of Haar functions supported on dyadic rectangles of a fixed volume in the unit cube. The conjecture is fundamental to questions in discrepancy theory, approximation theory and probability theory. In this artic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-01
Main Authors: Bilyk, Dmitriy, Lacey, Michael T, Parissis, Ioannis, Vagharshakyan, Armen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bilyk, Dmitriy
Lacey, Michael T
Parissis, Ioannis
Vagharshakyan, Armen
description The Small Ball Inequality is a conjectural lower bound on sums the L-infinity norm of sums of Haar functions supported on dyadic rectangles of a fixed volume in the unit cube. The conjecture is fundamental to questions in discrepancy theory, approximation theory and probability theory. In this article, we concentrate on a special case of the conjecture, and give the best known lower bound in dimension 3, using a conditional expectation argument.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085963735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085963735</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859637353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcFQIyShKTVVwycxNzSvOzM9LzFEIzkzPS01RCM5NzMlRcAIRnnmphaWJOZkllTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0CGhKcbyRgYWppZmxubGpMXGqAA-BMnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085963735</pqid></control><display><type>article</type><title>A Three Dimensional Signed Small Ball Inequality</title><source>Publicly Available Content (ProQuest)</source><creator>Bilyk, Dmitriy ; Lacey, Michael T ; Parissis, Ioannis ; Vagharshakyan, Armen</creator><creatorcontrib>Bilyk, Dmitriy ; Lacey, Michael T ; Parissis, Ioannis ; Vagharshakyan, Armen</creatorcontrib><description>The Small Ball Inequality is a conjectural lower bound on sums the L-infinity norm of sums of Haar functions supported on dyadic rectangles of a fixed volume in the unit cube. The conjecture is fundamental to questions in discrepancy theory, approximation theory and probability theory. In this article, we concentrate on a special case of the conjecture, and give the best known lower bound in dimension 3, using a conditional expectation argument.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Economic models ; Lower bounds ; Probability theory ; Rectangles ; Sums</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085963735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bilyk, Dmitriy</creatorcontrib><creatorcontrib>Lacey, Michael T</creatorcontrib><creatorcontrib>Parissis, Ioannis</creatorcontrib><creatorcontrib>Vagharshakyan, Armen</creatorcontrib><title>A Three Dimensional Signed Small Ball Inequality</title><title>arXiv.org</title><description>The Small Ball Inequality is a conjectural lower bound on sums the L-infinity norm of sums of Haar functions supported on dyadic rectangles of a fixed volume in the unit cube. The conjecture is fundamental to questions in discrepancy theory, approximation theory and probability theory. In this article, we concentrate on a special case of the conjecture, and give the best known lower bound in dimension 3, using a conditional expectation argument.</description><subject>Economic models</subject><subject>Lower bounds</subject><subject>Probability theory</subject><subject>Rectangles</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcFQIyShKTVVwycxNzSvOzM9LzFEIzkzPS01RCM5NzMlRcAIRnnmphaWJOZkllTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0CGhKcbyRgYWppZmxubGpMXGqAA-BMnQ</recordid><startdate>20100130</startdate><enddate>20100130</enddate><creator>Bilyk, Dmitriy</creator><creator>Lacey, Michael T</creator><creator>Parissis, Ioannis</creator><creator>Vagharshakyan, Armen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100130</creationdate><title>A Three Dimensional Signed Small Ball Inequality</title><author>Bilyk, Dmitriy ; Lacey, Michael T ; Parissis, Ioannis ; Vagharshakyan, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859637353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Economic models</topic><topic>Lower bounds</topic><topic>Probability theory</topic><topic>Rectangles</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Bilyk, Dmitriy</creatorcontrib><creatorcontrib>Lacey, Michael T</creatorcontrib><creatorcontrib>Parissis, Ioannis</creatorcontrib><creatorcontrib>Vagharshakyan, Armen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilyk, Dmitriy</au><au>Lacey, Michael T</au><au>Parissis, Ioannis</au><au>Vagharshakyan, Armen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Three Dimensional Signed Small Ball Inequality</atitle><jtitle>arXiv.org</jtitle><date>2010-01-30</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>The Small Ball Inequality is a conjectural lower bound on sums the L-infinity norm of sums of Haar functions supported on dyadic rectangles of a fixed volume in the unit cube. The conjecture is fundamental to questions in discrepancy theory, approximation theory and probability theory. In this article, we concentrate on a special case of the conjecture, and give the best known lower bound in dimension 3, using a conditional expectation argument.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085963735
source Publicly Available Content (ProQuest)
subjects Economic models
Lower bounds
Probability theory
Rectangles
Sums
title A Three Dimensional Signed Small Ball Inequality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Three%20Dimensional%20Signed%20Small%20Ball%20Inequality&rft.jtitle=arXiv.org&rft.au=Bilyk,%20Dmitriy&rft.date=2010-01-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085963735%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20859637353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085963735&rft_id=info:pmid/&rfr_iscdi=true