Loading…
The braidings in the mapping class groups of surfaces
The disjoint union of mapping class groups of surfaces forms a braided monoidal category \(\mathcal M\), as the disjoint union of the braid groups \(\mathcal B\) does. We give a concrete, and geometric meaning of the braiding \(\beta_{r,s}\) in \(\M\). Moreover, we find a set of elements in the mapp...
Saved in:
Published in: | arXiv.org 2012-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Song, Yongjin |
description | The disjoint union of mapping class groups of surfaces forms a braided monoidal category \(\mathcal M\), as the disjoint union of the braid groups \(\mathcal B\) does. We give a concrete, and geometric meaning of the braiding \(\beta_{r,s}\) in \(\M\). Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we obtain an obvious map \(\phi:B_g\ra\Gamma_{g,1}\). We show that this map \(\phi\) is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor \(\Phi : \mathcal B \rightarrow \mathcal M\), the integral homology homomorphism induced by \(\phi\) is trivial in the stable range. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086069287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086069287</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860692873</originalsourceid><addsrcrecordid>eNqNikEKwjAQRYMgWLR3GHBdiJMmjWtRPED3JdakptQmZpr724UHcPV57_0NK1CIU6VrxB0riUbOOaoGpRQFk-3LwiMZ__TzQOBnWFbxNjGuDP1kiGBIIUeC4IBycqa3dGBbZyay5W_37Hi7tpd7FVP4ZEtLN4ac5jV1yLXi6oy6Ef-9vnchNNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086069287</pqid></control><display><type>article</type><title>The braidings in the mapping class groups of surfaces</title><source>Publicly Available Content Database</source><creator>Song, Yongjin</creator><creatorcontrib>Song, Yongjin</creatorcontrib><description>The disjoint union of mapping class groups of surfaces forms a braided monoidal category \(\mathcal M\), as the disjoint union of the braid groups \(\mathcal B\) does. We give a concrete, and geometric meaning of the braiding \(\beta_{r,s}\) in \(\M\). Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we obtain an obvious map \(\phi:B_g\ra\Gamma_{g,1}\). We show that this map \(\phi\) is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor \(\Phi : \mathcal B \rightarrow \mathcal M\), the integral homology homomorphism induced by \(\phi\) is trivial in the stable range.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braid theory ; Braiding ; Homology ; Homomorphisms ; Mapping</subject><ispartof>arXiv.org, 2012-05</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086069287?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Song, Yongjin</creatorcontrib><title>The braidings in the mapping class groups of surfaces</title><title>arXiv.org</title><description>The disjoint union of mapping class groups of surfaces forms a braided monoidal category \(\mathcal M\), as the disjoint union of the braid groups \(\mathcal B\) does. We give a concrete, and geometric meaning of the braiding \(\beta_{r,s}\) in \(\M\). Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we obtain an obvious map \(\phi:B_g\ra\Gamma_{g,1}\). We show that this map \(\phi\) is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor \(\Phi : \mathcal B \rightarrow \mathcal M\), the integral homology homomorphism induced by \(\phi\) is trivial in the stable range.</description><subject>Braid theory</subject><subject>Braiding</subject><subject>Homology</subject><subject>Homomorphisms</subject><subject>Mapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQRYMgWLR3GHBdiJMmjWtRPED3JdakptQmZpr724UHcPV57_0NK1CIU6VrxB0riUbOOaoGpRQFk-3LwiMZ__TzQOBnWFbxNjGuDP1kiGBIIUeC4IBycqa3dGBbZyay5W_37Hi7tpd7FVP4ZEtLN4ac5jV1yLXi6oy6Ef-9vnchNNk</recordid><startdate>20120508</startdate><enddate>20120508</enddate><creator>Song, Yongjin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120508</creationdate><title>The braidings in the mapping class groups of surfaces</title><author>Song, Yongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860692873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Braid theory</topic><topic>Braiding</topic><topic>Homology</topic><topic>Homomorphisms</topic><topic>Mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Yongjin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yongjin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The braidings in the mapping class groups of surfaces</atitle><jtitle>arXiv.org</jtitle><date>2012-05-08</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The disjoint union of mapping class groups of surfaces forms a braided monoidal category \(\mathcal M\), as the disjoint union of the braid groups \(\mathcal B\) does. We give a concrete, and geometric meaning of the braiding \(\beta_{r,s}\) in \(\M\). Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we obtain an obvious map \(\phi:B_g\ra\Gamma_{g,1}\). We show that this map \(\phi\) is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor \(\Phi : \mathcal B \rightarrow \mathcal M\), the integral homology homomorphism induced by \(\phi\) is trivial in the stable range.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086069287 |
source | Publicly Available Content Database |
subjects | Braid theory Braiding Homology Homomorphisms Mapping |
title | The braidings in the mapping class groups of surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20braidings%20in%20the%20mapping%20class%20groups%20of%20surfaces&rft.jtitle=arXiv.org&rft.au=Song,%20Yongjin&rft.date=2012-05-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086069287%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20860692873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086069287&rft_id=info:pmid/&rfr_iscdi=true |