Loading…
HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees
Dawid, Kjaerulff and Lauritzen (1994) provided a preliminary description of a hybrid between Monte-Carlo sampling methods and exact local computations in junction trees. Utilizing the strengths of both methods, such hybrid inference methods has the potential of expanding the class of problems which...
Saved in:
Published in: | arXiv.org 2013-02 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kjærulff, Uffe |
description | Dawid, Kjaerulff and Lauritzen (1994) provided a preliminary description of a hybrid between Monte-Carlo sampling methods and exact local computations in junction trees. Utilizing the strengths of both methods, such hybrid inference methods has the potential of expanding the class of problems which can be solved under bounded resources as well as solving problems which otherwise resist exact solutions. The paper provides a detailed description of a particular instance of such a hybrid scheme; namely, combination of exact inference and Gibbs sampling in discrete Bayesian networks. We argue that this combination calls for an extension of the usual message passing scheme of ordinary junction trees. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086076870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086076870</sourcerecordid><originalsourceid>FETCH-proquest_journals_20860768703</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FqaZ_KGtmdbWWsto1xjROzaj0ONX0AO0OovzLZgnpNwFyV6IFfOd6zjnIopFGEqPHYtbXh4gNUOtSdMDspdqJjhTixapQVB0h1zXtYNSDWP_JZrgMlMzaUNwtYhuw5at6h36v67Z9pRd0yIYrXnO6KaqM7Olz6oETyIeR0nM5X_qDYVDOUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086076870</pqid></control><display><type>article</type><title>HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees</title><source>Publicly Available Content Database</source><creator>Kjærulff, Uffe</creator><creatorcontrib>Kjærulff, Uffe</creatorcontrib><description>Dawid, Kjaerulff and Lauritzen (1994) provided a preliminary description of a hybrid between Monte-Carlo sampling methods and exact local computations in junction trees. Utilizing the strengths of both methods, such hybrid inference methods has the potential of expanding the class of problems which can be solved under bounded resources as well as solving problems which otherwise resist exact solutions. The paper provides a detailed description of a particular instance of such a hybrid scheme; namely, combination of exact inference and Gibbs sampling in discrete Bayesian networks. We argue that this combination calls for an extension of the usual message passing scheme of ordinary junction trees.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Economic models ; Inference ; Message passing ; Monte Carlo simulation ; Sampling methods ; Trees</subject><ispartof>arXiv.org, 2013-02</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086076870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,36999,44577</link.rule.ids></links><search><creatorcontrib>Kjærulff, Uffe</creatorcontrib><title>HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees</title><title>arXiv.org</title><description>Dawid, Kjaerulff and Lauritzen (1994) provided a preliminary description of a hybrid between Monte-Carlo sampling methods and exact local computations in junction trees. Utilizing the strengths of both methods, such hybrid inference methods has the potential of expanding the class of problems which can be solved under bounded resources as well as solving problems which otherwise resist exact solutions. The paper provides a detailed description of a particular instance of such a hybrid scheme; namely, combination of exact inference and Gibbs sampling in discrete Bayesian networks. We argue that this combination calls for an extension of the usual message passing scheme of ordinary junction trees.</description><subject>Bayesian analysis</subject><subject>Economic models</subject><subject>Inference</subject><subject>Message passing</subject><subject>Monte Carlo simulation</subject><subject>Sampling methods</subject><subject>Trees</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FqaZ_KGtmdbWWsto1xjROzaj0ONX0AO0OovzLZgnpNwFyV6IFfOd6zjnIopFGEqPHYtbXh4gNUOtSdMDspdqJjhTixapQVB0h1zXtYNSDWP_JZrgMlMzaUNwtYhuw5at6h36v67Z9pRd0yIYrXnO6KaqM7Olz6oETyIeR0nM5X_qDYVDOUU</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Kjærulff, Uffe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20130220</creationdate><title>HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees</title><author>Kjærulff, Uffe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20860768703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bayesian analysis</topic><topic>Economic models</topic><topic>Inference</topic><topic>Message passing</topic><topic>Monte Carlo simulation</topic><topic>Sampling methods</topic><topic>Trees</topic><toplevel>online_resources</toplevel><creatorcontrib>Kjærulff, Uffe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kjærulff, Uffe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees</atitle><jtitle>arXiv.org</jtitle><date>2013-02-20</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Dawid, Kjaerulff and Lauritzen (1994) provided a preliminary description of a hybrid between Monte-Carlo sampling methods and exact local computations in junction trees. Utilizing the strengths of both methods, such hybrid inference methods has the potential of expanding the class of problems which can be solved under bounded resources as well as solving problems which otherwise resist exact solutions. The paper provides a detailed description of a particular instance of such a hybrid scheme; namely, combination of exact inference and Gibbs sampling in discrete Bayesian networks. We argue that this combination calls for an extension of the usual message passing scheme of ordinary junction trees.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086076870 |
source | Publicly Available Content Database |
subjects | Bayesian analysis Economic models Inference Message passing Monte Carlo simulation Sampling methods Trees |
title | HUGS: Combining Exact Inference and Gibbs Sampling in Junction Trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HUGS:%20Combining%20Exact%20Inference%20and%20Gibbs%20Sampling%20in%20Junction%20Trees&rft.jtitle=arXiv.org&rft.au=Kj%C3%A6rulff,%20Uffe&rft.date=2013-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086076870%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20860768703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086076870&rft_id=info:pmid/&rfr_iscdi=true |