Loading…

Ergodic Properties of \(k\)-Free Integers in Number Fields

Let \(K/\mathbf Q\) be a degree \(d\) extension. Inside the ring of integers \(\mathcal O_K\) we define the set of \(k\)-free integers \(\mathcal F_k\) and a natural \(\mathcal O_K\)-action on the space of binary \(\mathcal O_K\)-indexed sequences, equipped with an \(\mathcal O_K\)-invariant probabi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-10
Main Authors: Cellarosi, Francesco, Vinogradov, Ilya
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cellarosi, Francesco
Vinogradov, Ilya
description Let \(K/\mathbf Q\) be a degree \(d\) extension. Inside the ring of integers \(\mathcal O_K\) we define the set of \(k\)-free integers \(\mathcal F_k\) and a natural \(\mathcal O_K\)-action on the space of binary \(\mathcal O_K\)-indexed sequences, equipped with an \(\mathcal O_K\)-invariant probability measure associated to \(\mathcal F_k\). We prove that this action is ergodic, has pure point spectrum and is isomorphic to a \(\mathbf Z^d\)-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the paper by the first author and Sinai arXiv:1112.4691 [math.DS] where \(K=\mathbf Q\) and \(k=2\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086143121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086143121</sourcerecordid><originalsourceid>FETCH-proquest_journals_20861431213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwci1Kz0_JTFYIKMovSC0qyUwtVshPU4jRyI7R1HUrSk1V8MwrSU1PLSpWyMxT8CvNTUotUnDLTM1JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszQxNjQyNDY-JUAQA1QTWR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086143121</pqid></control><display><type>article</type><title>Ergodic Properties of \(k\)-Free Integers in Number Fields</title><source>Publicly Available Content Database</source><creator>Cellarosi, Francesco ; Vinogradov, Ilya</creator><creatorcontrib>Cellarosi, Francesco ; Vinogradov, Ilya</creatorcontrib><description>Let \(K/\mathbf Q\) be a degree \(d\) extension. Inside the ring of integers \(\mathcal O_K\) we define the set of \(k\)-free integers \(\mathcal F_k\) and a natural \(\mathcal O_K\)-action on the space of binary \(\mathcal O_K\)-indexed sequences, equipped with an \(\mathcal O_K\)-invariant probability measure associated to \(\mathcal F_k\). We prove that this action is ergodic, has pure point spectrum and is isomorphic to a \(\mathbf Z^d\)-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the paper by the first author and Sinai arXiv:1112.4691 [math.DS] where \(K=\mathbf Q\) and \(k=2\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ergodic processes ; Group theory ; Integers ; Number theory ; Rings (mathematics)</subject><ispartof>arXiv.org, 2013-10</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086143121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cellarosi, Francesco</creatorcontrib><creatorcontrib>Vinogradov, Ilya</creatorcontrib><title>Ergodic Properties of \(k\)-Free Integers in Number Fields</title><title>arXiv.org</title><description>Let \(K/\mathbf Q\) be a degree \(d\) extension. Inside the ring of integers \(\mathcal O_K\) we define the set of \(k\)-free integers \(\mathcal F_k\) and a natural \(\mathcal O_K\)-action on the space of binary \(\mathcal O_K\)-indexed sequences, equipped with an \(\mathcal O_K\)-invariant probability measure associated to \(\mathcal F_k\). We prove that this action is ergodic, has pure point spectrum and is isomorphic to a \(\mathbf Z^d\)-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the paper by the first author and Sinai arXiv:1112.4691 [math.DS] where \(K=\mathbf Q\) and \(k=2\).</description><subject>Ergodic processes</subject><subject>Group theory</subject><subject>Integers</subject><subject>Number theory</subject><subject>Rings (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwci1Kz0_JTFYIKMovSC0qyUwtVshPU4jRyI7R1HUrSk1V8MwrSU1PLSpWyMxT8CvNTUotUnDLTM1JKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszQxNjQyNDY-JUAQA1QTWR</recordid><startdate>20131004</startdate><enddate>20131004</enddate><creator>Cellarosi, Francesco</creator><creator>Vinogradov, Ilya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131004</creationdate><title>Ergodic Properties of \(k\)-Free Integers in Number Fields</title><author>Cellarosi, Francesco ; Vinogradov, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20861431213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ergodic processes</topic><topic>Group theory</topic><topic>Integers</topic><topic>Number theory</topic><topic>Rings (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cellarosi, Francesco</creatorcontrib><creatorcontrib>Vinogradov, Ilya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cellarosi, Francesco</au><au>Vinogradov, Ilya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ergodic Properties of \(k\)-Free Integers in Number Fields</atitle><jtitle>arXiv.org</jtitle><date>2013-10-04</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Let \(K/\mathbf Q\) be a degree \(d\) extension. Inside the ring of integers \(\mathcal O_K\) we define the set of \(k\)-free integers \(\mathcal F_k\) and a natural \(\mathcal O_K\)-action on the space of binary \(\mathcal O_K\)-indexed sequences, equipped with an \(\mathcal O_K\)-invariant probability measure associated to \(\mathcal F_k\). We prove that this action is ergodic, has pure point spectrum and is isomorphic to a \(\mathbf Z^d\)-action on a compact abelian group. In particular, it is not weakly mixing and has zero measure-theoretical entropy. This work generalizes the paper by the first author and Sinai arXiv:1112.4691 [math.DS] where \(K=\mathbf Q\) and \(k=2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086143121
source Publicly Available Content Database
subjects Ergodic processes
Group theory
Integers
Number theory
Rings (mathematics)
title Ergodic Properties of \(k\)-Free Integers in Number Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ergodic%20Properties%20of%20%5C(k%5C)-Free%20Integers%20in%20Number%20Fields&rft.jtitle=arXiv.org&rft.au=Cellarosi,%20Francesco&rft.date=2013-10-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086143121%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20861431213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086143121&rft_id=info:pmid/&rfr_iscdi=true