Loading…
Space Charge Transfer in Hybrid Inorganic/Organic Systems
We discuss density functional theory calculations of hybrid inorganic/organic systems (HIOS) that explicitly include the global effects of doping (i.e. position of the Fermi level) and the formation of a space-charge layer. For the example of tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on the ZnO(...
Saved in:
Published in: | arXiv.org 2013-06 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss density functional theory calculations of hybrid inorganic/organic systems (HIOS) that explicitly include the global effects of doping (i.e. position of the Fermi level) and the formation of a space-charge layer. For the example of tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on the ZnO(000\(\bar{1}\)) surface we show that the adsorption energy and electron transfer depend strongly on the ZnO doping. The associated work function changes are large, for which the formation of space-charge layers is the main driving force. The prominent doping effects are expected to be quite general for charge-transfer interfaces in HIOS and important for device design. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1306.4580 |