Loading…
Distinguishing Color-Octet and Color-Singlet Resonances at the Large Hadron Collider
Di-jet resonance searches are simple, yet powerful and model-independent, probes for discovering new particles at hadron colliders. Once such a resonance has been discovered it is important to determine the mass, spin, couplings, chiral behavior and color properties to determine the underlying theor...
Saved in:
Published in: | arXiv.org 2013-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Di-jet resonance searches are simple, yet powerful and model-independent, probes for discovering new particles at hadron colliders. Once such a resonance has been discovered it is important to determine the mass, spin, couplings, chiral behavior and color properties to determine the underlying theoretical structure. We propose a new variable which, in the absence of decays of the resonance into new non-standard states, distinguishes between color-octet and color-singlet resonances. To keep our study widely applicable we study phenomenological models of color-octet and color-singlet resonances in flavor universal as well as flavor non-universal scenarios. We present our analysis for a wide range of mass (2.5 - 6 TeV), couplings and flavor scenarios for the LHC with center of mass energy of 14 TeV and varying integrated luminosities of 30, 100, 300 and 1000 \({\rm fb}^{-1}\). We find encouraging results to distinguish color-octet and color-singlet resonances for different flavor scenarios at the LHC. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1306.4715 |