Loading…

Asymmetric EPR entanglement in continuous variable systems

Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2012-03
Main Authors: Wagner, Katherine, Janousek, Jiri, Armstrong, Seiji, Jean-Francois Morizur, Ping Koy Lam, Hans-Albert Bachor
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wagner, Katherine
Janousek, Jiri
Armstrong, Seiji
Jean-Francois Morizur
Ping Koy Lam
Hans-Albert Bachor
description Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50/50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 0.78/0.22 beamsplitter is optimal for observing entanglement.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086220267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086220267</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862202673</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwciyuzM1NLSnKTFZwDQhSSM0rScxLz0nNBTIUMvMUkvPzSjLzSvNLixXKEosyE5NyUhWKK4tLUnOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjAwszICGSrMXGqAPpaN1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086220267</pqid></control><display><type>article</type><title>Asymmetric EPR entanglement in continuous variable systems</title><source>Publicly Available Content Database</source><creator>Wagner, Katherine ; Janousek, Jiri ; Armstrong, Seiji ; Jean-Francois Morizur ; Ping Koy Lam ; Hans-Albert Bachor</creator><creatorcontrib>Wagner, Katherine ; Janousek, Jiri ; Armstrong, Seiji ; Jean-Francois Morizur ; Ping Koy Lam ; Hans-Albert Bachor</creatorcontrib><description>Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50/50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 0.78/0.22 beamsplitter is optimal for observing entanglement.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymmetry ; Beams (radiation) ; Continuity (mathematics) ; Interference ; Nonlinear systems ; Quantum entanglement ; Quantum phenomena ; Quantum theory ; Squeezed states (quantum theory) ; Subsystems ; Symmetry</subject><ispartof>arXiv.org, 2012-03</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086220267?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wagner, Katherine</creatorcontrib><creatorcontrib>Janousek, Jiri</creatorcontrib><creatorcontrib>Armstrong, Seiji</creatorcontrib><creatorcontrib>Jean-Francois Morizur</creatorcontrib><creatorcontrib>Ping Koy Lam</creatorcontrib><creatorcontrib>Hans-Albert Bachor</creatorcontrib><title>Asymmetric EPR entanglement in continuous variable systems</title><title>arXiv.org</title><description>Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50/50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 0.78/0.22 beamsplitter is optimal for observing entanglement.</description><subject>Asymmetry</subject><subject>Beams (radiation)</subject><subject>Continuity (mathematics)</subject><subject>Interference</subject><subject>Nonlinear systems</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Squeezed states (quantum theory)</subject><subject>Subsystems</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwciyuzM1NLSnKTFZwDQhSSM0rScxLz0nNBTIUMvMUkvPzSjLzSvNLixXKEosyE5NyUhWKK4tLUnOLeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjAwszICGSrMXGqAPpaN1g</recordid><startdate>20120309</startdate><enddate>20120309</enddate><creator>Wagner, Katherine</creator><creator>Janousek, Jiri</creator><creator>Armstrong, Seiji</creator><creator>Jean-Francois Morizur</creator><creator>Ping Koy Lam</creator><creator>Hans-Albert Bachor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120309</creationdate><title>Asymmetric EPR entanglement in continuous variable systems</title><author>Wagner, Katherine ; Janousek, Jiri ; Armstrong, Seiji ; Jean-Francois Morizur ; Ping Koy Lam ; Hans-Albert Bachor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862202673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymmetry</topic><topic>Beams (radiation)</topic><topic>Continuity (mathematics)</topic><topic>Interference</topic><topic>Nonlinear systems</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Squeezed states (quantum theory)</topic><topic>Subsystems</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Katherine</creatorcontrib><creatorcontrib>Janousek, Jiri</creatorcontrib><creatorcontrib>Armstrong, Seiji</creatorcontrib><creatorcontrib>Jean-Francois Morizur</creatorcontrib><creatorcontrib>Ping Koy Lam</creatorcontrib><creatorcontrib>Hans-Albert Bachor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Katherine</au><au>Janousek, Jiri</au><au>Armstrong, Seiji</au><au>Jean-Francois Morizur</au><au>Ping Koy Lam</au><au>Hans-Albert Bachor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymmetric EPR entanglement in continuous variable systems</atitle><jtitle>arXiv.org</jtitle><date>2012-03-09</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Continuous variable entanglement can be produced in nonlinear systems or via interference of squeezed states. In many of optical systems, such as parametric down conversion or interference of optical squeezed states, production of two perfectly symmetric subsystems is usually used for demonstrating the existence of entanglement. This symmetry simplifies the description of the concept of entanglement. However, asymmetry in entanglement may arise naturally in a real experiment, or be intentionally introduced in a given quantum information protocol. These asymmetries can emerge from having the output beams experience different losses and environmental contamination, or from the availability of non-identical input quantum states in quantum communication protocols. In this paper, we present a visualisation of entanglement using quadrature amplitude plots of the twin beams. We quantitatively discuss the strength of asymmetric entanglement using EPR and inseparability criteria and theoretically show that the optimal beamsplitter ratio for entanglement is dependent on the asymmetries and may not be 50/50. To support this theory, we present experimental results showing one particular asymmetric entanglement where a 0.78/0.22 beamsplitter is optimal for observing entanglement.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086220267
source Publicly Available Content Database
subjects Asymmetry
Beams (radiation)
Continuity (mathematics)
Interference
Nonlinear systems
Quantum entanglement
Quantum phenomena
Quantum theory
Squeezed states (quantum theory)
Subsystems
Symmetry
title Asymmetric EPR entanglement in continuous variable systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymmetric%20EPR%20entanglement%20in%20continuous%20variable%20systems&rft.jtitle=arXiv.org&rft.au=Wagner,%20Katherine&rft.date=2012-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086220267%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20862202673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086220267&rft_id=info:pmid/&rfr_iscdi=true