Loading…
A new representation of Links: Butterflies
With the idea of an eventual classification of 3-bridge links,\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is \(S^{3},\) and the image of a prefered set of edges is a link. Several examples are given. We prove that e...
Saved in:
Published in: | arXiv.org 2012-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hilden, H M Montesinos, J M Tejada, D M Toro, M M |
description | With the idea of an eventual classification of 3-bridge links,\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is \(S^{3},\) and the image of a prefered set of edges is a link. Several examples are given. We prove that every link can be represented in this way (butterfly representation). We define the butterfly number of a link, and we show that the butterfly number and the bridge number of a link coincide. This is done by defining a move on the butterfly diagram. We give an example of two different butterflies with minimal butterfly number representing the knot \(8_{20}.\) This raises the problem of finding a set of moves on a butterfly diagram connecting diagrams representing the same link. This is left as an open problem. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086222989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086222989</sourcerecordid><originalsourceid>FETCH-proquest_journals_20862229893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQclTISy1XKEotKEotTs0rSSzJzM9TyE9T8MnMyy62UnAqLSlJLUrLyUwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzMjIyNLC0tj4lQBAAEcMMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086222989</pqid></control><display><type>article</type><title>A new representation of Links: Butterflies</title><source>Publicly Available Content (ProQuest)</source><creator>Hilden, H M ; Montesinos, J M ; Tejada, D M ; Toro, M M</creator><creatorcontrib>Hilden, H M ; Montesinos, J M ; Tejada, D M ; Toro, M M</creatorcontrib><description>With the idea of an eventual classification of 3-bridge links,\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is \(S^{3},\) and the image of a prefered set of edges is a link. Several examples are given. We prove that every link can be represented in this way (butterfly representation). We define the butterfly number of a link, and we show that the butterfly number and the bridge number of a link coincide. This is done by defining a move on the butterfly diagram. We give an example of two different butterflies with minimal butterfly number representing the knot \(8_{20}.\) This raises the problem of finding a set of moves on a butterfly diagram connecting diagrams representing the same link. This is left as an open problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Knot theory ; Representations</subject><ispartof>arXiv.org, 2012-03</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086222989?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Hilden, H M</creatorcontrib><creatorcontrib>Montesinos, J M</creatorcontrib><creatorcontrib>Tejada, D M</creatorcontrib><creatorcontrib>Toro, M M</creatorcontrib><title>A new representation of Links: Butterflies</title><title>arXiv.org</title><description>With the idea of an eventual classification of 3-bridge links,\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is \(S^{3},\) and the image of a prefered set of edges is a link. Several examples are given. We prove that every link can be represented in this way (butterfly representation). We define the butterfly number of a link, and we show that the butterfly number and the bridge number of a link coincide. This is done by defining a move on the butterfly diagram. We give an example of two different butterflies with minimal butterfly number representing the knot \(8_{20}.\) This raises the problem of finding a set of moves on a butterfly diagram connecting diagrams representing the same link. This is left as an open problem.</description><subject>Knot theory</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQclTISy1XKEotKEotTs0rSSzJzM9TyE9T8MnMyy62UnAqLSlJLUrLyUwt5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDCzMjIyNLC0tj4lQBAAEcMMY</recordid><startdate>20120309</startdate><enddate>20120309</enddate><creator>Hilden, H M</creator><creator>Montesinos, J M</creator><creator>Tejada, D M</creator><creator>Toro, M M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120309</creationdate><title>A new representation of Links: Butterflies</title><author>Hilden, H M ; Montesinos, J M ; Tejada, D M ; Toro, M M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20862229893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Knot theory</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Hilden, H M</creatorcontrib><creatorcontrib>Montesinos, J M</creatorcontrib><creatorcontrib>Tejada, D M</creatorcontrib><creatorcontrib>Toro, M M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilden, H M</au><au>Montesinos, J M</au><au>Tejada, D M</au><au>Toro, M M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A new representation of Links: Butterflies</atitle><jtitle>arXiv.org</jtitle><date>2012-03-09</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>With the idea of an eventual classification of 3-bridge links,\ we define a very nice class of 3-balls (called butterflies) with faces identified by pairs, such that the identification space is \(S^{3},\) and the image of a prefered set of edges is a link. Several examples are given. We prove that every link can be represented in this way (butterfly representation). We define the butterfly number of a link, and we show that the butterfly number and the bridge number of a link coincide. This is done by defining a move on the butterfly diagram. We give an example of two different butterflies with minimal butterfly number representing the knot \(8_{20}.\) This raises the problem of finding a set of moves on a butterfly diagram connecting diagrams representing the same link. This is left as an open problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086222989 |
source | Publicly Available Content (ProQuest) |
subjects | Knot theory Representations |
title | A new representation of Links: Butterflies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20new%20representation%20of%20Links:%20Butterflies&rft.jtitle=arXiv.org&rft.au=Hilden,%20H%20M&rft.date=2012-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086222989%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20862229893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086222989&rft_id=info:pmid/&rfr_iscdi=true |