Loading…
Simulation of magnetic active polymers for versatile microfluidic devices
We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnos...
Saved in:
Published in: | arXiv.org 2013-05 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gusenbauer, Markus Özelt, Harald Fischbacher, Johann Reichel, Franz Exl, Lukas Bance, Simon Kataeva, Nadezhda Binder, Claudia Brückl, Hubert Schrefl, Thomas |
description | We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs. |
doi_str_mv | 10.48550/arxiv.1305.7071 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086230262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086230262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512-5d7ad7d939e9871f5cb66f3948685f8c8f5949438ddd92c692b534348be88c6e3</originalsourceid><addsrcrecordid>eNotjztrwzAYRUWh0JBm7yjo7FRvfRpL6CMQyNDsQdajKNhWKtmm_fc1tNO9w-FcLkIPlGwFSEmebPlO85ZyIreaaHqDVoxz2oBg7A5tar0QQpjSTEq-QvuP1E-dHVMecI64t59DGJPD1o1pDviau58-lIpjLnheykJ2AffJlRy7KfkF9WFOLtR7dBttV8PmP9fo9Ppy2r03h-Pbfvd8aKykrJFeW6-94SYY0DRK1yoVuRGgQEZwEKURRnDw3hvmlGGt5IILaAOAU4Gv0eOf9lry1xTqeL7kqQzL4pkRUIwv3xj_BdPlTkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086230262</pqid></control><display><type>article</type><title>Simulation of magnetic active polymers for versatile microfluidic devices</title><source>Publicly Available Content Database</source><creator>Gusenbauer, Markus ; Özelt, Harald ; Fischbacher, Johann ; Reichel, Franz ; Exl, Lukas ; Bance, Simon ; Kataeva, Nadezhda ; Binder, Claudia ; Brückl, Hubert ; Schrefl, Thomas</creator><creatorcontrib>Gusenbauer, Markus ; Özelt, Harald ; Fischbacher, Johann ; Reichel, Franz ; Exl, Lukas ; Bance, Simon ; Kataeva, Nadezhda ; Binder, Claudia ; Brückl, Hubert ; Schrefl, Thomas</creatorcontrib><description>We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1305.7071</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Blood cells ; Blood plasma ; Cancer ; Finite element method ; Lab-on-a-chip ; Mathematical analysis ; Microfluidic devices ; Nanoparticles ; Polydimethylsiloxane ; Polymers ; Silicone resins ; Simulation</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086230262?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Özelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Reichel, Franz</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Kataeva, Nadezhda</creatorcontrib><creatorcontrib>Binder, Claudia</creatorcontrib><creatorcontrib>Brückl, Hubert</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><title>Simulation of magnetic active polymers for versatile microfluidic devices</title><title>arXiv.org</title><description>We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.</description><subject>Blood cells</subject><subject>Blood plasma</subject><subject>Cancer</subject><subject>Finite element method</subject><subject>Lab-on-a-chip</subject><subject>Mathematical analysis</subject><subject>Microfluidic devices</subject><subject>Nanoparticles</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Silicone resins</subject><subject>Simulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjztrwzAYRUWh0JBm7yjo7FRvfRpL6CMQyNDsQdajKNhWKtmm_fc1tNO9w-FcLkIPlGwFSEmebPlO85ZyIreaaHqDVoxz2oBg7A5tar0QQpjSTEq-QvuP1E-dHVMecI64t59DGJPD1o1pDviau58-lIpjLnheykJ2AffJlRy7KfkF9WFOLtR7dBttV8PmP9fo9Ppy2r03h-Pbfvd8aKykrJFeW6-94SYY0DRK1yoVuRGgQEZwEKURRnDw3hvmlGGt5IILaAOAU4Gv0eOf9lry1xTqeL7kqQzL4pkRUIwv3xj_BdPlTkk</recordid><startdate>20130530</startdate><enddate>20130530</enddate><creator>Gusenbauer, Markus</creator><creator>Özelt, Harald</creator><creator>Fischbacher, Johann</creator><creator>Reichel, Franz</creator><creator>Exl, Lukas</creator><creator>Bance, Simon</creator><creator>Kataeva, Nadezhda</creator><creator>Binder, Claudia</creator><creator>Brückl, Hubert</creator><creator>Schrefl, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130530</creationdate><title>Simulation of magnetic active polymers for versatile microfluidic devices</title><author>Gusenbauer, Markus ; Özelt, Harald ; Fischbacher, Johann ; Reichel, Franz ; Exl, Lukas ; Bance, Simon ; Kataeva, Nadezhda ; Binder, Claudia ; Brückl, Hubert ; Schrefl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512-5d7ad7d939e9871f5cb66f3948685f8c8f5949438ddd92c692b534348be88c6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blood cells</topic><topic>Blood plasma</topic><topic>Cancer</topic><topic>Finite element method</topic><topic>Lab-on-a-chip</topic><topic>Mathematical analysis</topic><topic>Microfluidic devices</topic><topic>Nanoparticles</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Silicone resins</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Gusenbauer, Markus</creatorcontrib><creatorcontrib>Özelt, Harald</creatorcontrib><creatorcontrib>Fischbacher, Johann</creatorcontrib><creatorcontrib>Reichel, Franz</creatorcontrib><creatorcontrib>Exl, Lukas</creatorcontrib><creatorcontrib>Bance, Simon</creatorcontrib><creatorcontrib>Kataeva, Nadezhda</creatorcontrib><creatorcontrib>Binder, Claudia</creatorcontrib><creatorcontrib>Brückl, Hubert</creatorcontrib><creatorcontrib>Schrefl, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusenbauer, Markus</au><au>Özelt, Harald</au><au>Fischbacher, Johann</au><au>Reichel, Franz</au><au>Exl, Lukas</au><au>Bance, Simon</au><au>Kataeva, Nadezhda</au><au>Binder, Claudia</au><au>Brückl, Hubert</au><au>Schrefl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of magnetic active polymers for versatile microfluidic devices</atitle><jtitle>arXiv.org</jtitle><date>2013-05-30</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1305.7071</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086230262 |
source | Publicly Available Content Database |
subjects | Blood cells Blood plasma Cancer Finite element method Lab-on-a-chip Mathematical analysis Microfluidic devices Nanoparticles Polydimethylsiloxane Polymers Silicone resins Simulation |
title | Simulation of magnetic active polymers for versatile microfluidic devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20magnetic%20active%20polymers%20for%20versatile%20microfluidic%20devices&rft.jtitle=arXiv.org&rft.au=Gusenbauer,%20Markus&rft.date=2013-05-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1305.7071&rft_dat=%3Cproquest%3E2086230262%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a512-5d7ad7d939e9871f5cb66f3948685f8c8f5949438ddd92c692b534348be88c6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086230262&rft_id=info:pmid/&rfr_iscdi=true |