Loading…
Optical waveguide arrays: quantum effects and PT symmetry breaking
Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we r...
Saved in:
Published in: | arXiv.org 2013-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Joglekar, Yogesh N Thompson, Clinton Scott, Derek D Vemuri, Gautam |
description | Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal (\(\mathcal{PT}\)) symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate \(\mathcal{PT}\)-symmetric Hamiltonians and the transition from a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them. |
doi_str_mv | 10.48550/arxiv.1305.3565 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086237875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086237875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515-3f9bc840bb095288bf0ba8d8f6247211bd8233c666dd0be7312f271f8a1a5cc23</originalsourceid><addsrcrecordid>eNotjj1PwzAUAC0kJKrSndESc4L9nOe4bFDxJVUqQ_bq-atKadLWTgr991SC6ba7Y-xOirIyiOKB0k97KqUSWCrUeMUmoJQsTAVww2Y5b4UQoGtAVBP2vDoMraMd_6ZT2IytD5xSonN-5MeR-mHseIgxuCFz6j3_bHg-d10Y0pnbFOir7Te37DrSLofZP6eseX1pFu_FcvX2sXhaFoQSCxXn1plKWCvmCMbYKCwZb6KGqgYprTeXTae19l7YUCsJEWoZDUlC50BN2f2f9pD2xzHkYb3dj6m_FNcgjAZVmxrVL_daS0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086237875</pqid></control><display><type>article</type><title>Optical waveguide arrays: quantum effects and PT symmetry breaking</title><source>Publicly Available Content Database</source><creator>Joglekar, Yogesh N ; Thompson, Clinton ; Scott, Derek D ; Vemuri, Gautam</creator><creatorcontrib>Joglekar, Yogesh N ; Thompson, Clinton ; Scott, Derek D ; Vemuri, Gautam</creatorcontrib><description>Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal (\(\mathcal{PT}\)) symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate \(\mathcal{PT}\)-symmetric Hamiltonians and the transition from a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1305.3565</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Computer simulation ; Eigenvalues ; Electromagnetic radiation ; Energy spectra ; Hamiltonian functions ; Heterostructures ; Optical properties ; Optical waveguides ; Photonics</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086237875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Joglekar, Yogesh N</creatorcontrib><creatorcontrib>Thompson, Clinton</creatorcontrib><creatorcontrib>Scott, Derek D</creatorcontrib><creatorcontrib>Vemuri, Gautam</creatorcontrib><title>Optical waveguide arrays: quantum effects and PT symmetry breaking</title><title>arXiv.org</title><description>Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal (\(\mathcal{PT}\)) symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate \(\mathcal{PT}\)-symmetric Hamiltonians and the transition from a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them.</description><subject>Broken symmetry</subject><subject>Computer simulation</subject><subject>Eigenvalues</subject><subject>Electromagnetic radiation</subject><subject>Energy spectra</subject><subject>Hamiltonian functions</subject><subject>Heterostructures</subject><subject>Optical properties</subject><subject>Optical waveguides</subject><subject>Photonics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjj1PwzAUAC0kJKrSndESc4L9nOe4bFDxJVUqQ_bq-atKadLWTgr991SC6ba7Y-xOirIyiOKB0k97KqUSWCrUeMUmoJQsTAVww2Y5b4UQoGtAVBP2vDoMraMd_6ZT2IytD5xSonN-5MeR-mHseIgxuCFz6j3_bHg-d10Y0pnbFOir7Te37DrSLofZP6eseX1pFu_FcvX2sXhaFoQSCxXn1plKWCvmCMbYKCwZb6KGqgYprTeXTae19l7YUCsJEWoZDUlC50BN2f2f9pD2xzHkYb3dj6m_FNcgjAZVmxrVL_daS0g</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Joglekar, Yogesh N</creator><creator>Thompson, Clinton</creator><creator>Scott, Derek D</creator><creator>Vemuri, Gautam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130515</creationdate><title>Optical waveguide arrays: quantum effects and PT symmetry breaking</title><author>Joglekar, Yogesh N ; Thompson, Clinton ; Scott, Derek D ; Vemuri, Gautam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515-3f9bc840bb095288bf0ba8d8f6247211bd8233c666dd0be7312f271f8a1a5cc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Broken symmetry</topic><topic>Computer simulation</topic><topic>Eigenvalues</topic><topic>Electromagnetic radiation</topic><topic>Energy spectra</topic><topic>Hamiltonian functions</topic><topic>Heterostructures</topic><topic>Optical properties</topic><topic>Optical waveguides</topic><topic>Photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Joglekar, Yogesh N</creatorcontrib><creatorcontrib>Thompson, Clinton</creatorcontrib><creatorcontrib>Scott, Derek D</creatorcontrib><creatorcontrib>Vemuri, Gautam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joglekar, Yogesh N</au><au>Thompson, Clinton</au><au>Scott, Derek D</au><au>Vemuri, Gautam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical waveguide arrays: quantum effects and PT symmetry breaking</atitle><jtitle>arXiv.org</jtitle><date>2013-05-15</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal (\(\mathcal{PT}\)) symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate \(\mathcal{PT}\)-symmetric Hamiltonians and the transition from a purely real energy spectrum to a spectrum with complex conjugate eigenvalues that occurs in them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1305.3565</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086237875 |
source | Publicly Available Content Database |
subjects | Broken symmetry Computer simulation Eigenvalues Electromagnetic radiation Energy spectra Hamiltonian functions Heterostructures Optical properties Optical waveguides Photonics |
title | Optical waveguide arrays: quantum effects and PT symmetry breaking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20waveguide%20arrays:%20quantum%20effects%20and%20PT%20symmetry%20breaking&rft.jtitle=arXiv.org&rft.au=Joglekar,%20Yogesh%20N&rft.date=2013-05-15&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1305.3565&rft_dat=%3Cproquest%3E2086237875%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515-3f9bc840bb095288bf0ba8d8f6247211bd8233c666dd0be7312f271f8a1a5cc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086237875&rft_id=info:pmid/&rfr_iscdi=true |