Loading…

On indecomposable sets with applications

In this note we show the characteristic function of every indecomposable set \(F\) in the plane is \(BV\) equivalent to the characteristic function a closed set \(\mathbb{F}\), i.e. \(||\mathbb{1}_{F}-\mathbb{1}_{\mathbb{F}}||_{BV(\mathbb{R}^2)}=0\). We show by example this is false in dimension thr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-10
Main Author: Lorent, Andrew
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lorent, Andrew
description In this note we show the characteristic function of every indecomposable set \(F\) in the plane is \(BV\) equivalent to the characteristic function a closed set \(\mathbb{F}\), i.e. \(||\mathbb{1}_{F}-\mathbb{1}_{\mathbb{F}}||_{BV(\mathbb{R}^2)}=0\). We show by example this is false in dimension three and above. As a corollary to this result we show that for every \(\epsilon>0\) a set of finite perimeter \(S\) can be approximated by a closed subset \(\mathbb{S}_{\epsilon}\) with finitely many indecomposable components and with the property that \(H^1(\partial^M \mathbb{S}_{\epsilon}\backslash \partial^M S)=0\) and \(||\mathbb{1}_{S}-\mathbb{1}_{\mathbb{S}_{\epsilon}}||_{BV(\mathbb{R}^2)}
doi_str_mv 10.48550/arxiv.1305.3264
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086239247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086239247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-7ee9353b35b7c88302ab68f2169217f0db29950a22a8f1a4b5a759f22c23c6703</originalsourceid><addsrcrecordid>eNotzU1Lw0AQgOFFECy1d4-BXrwkzs7s7MdRil9Q6KX3MptuMCVNYjZVf76Cnt7b8yp1p6EynhkeZPpuPytNwBWhNVdqgUS69AbxRq1yPgEAWofMtFD3u75o-2Oqh_M4ZIldKnKac_HVzu-FjGPX1jK3Q59v1XUjXU6r_y7V_vlpv3ktt7uXt83jthTWrnQpBWKKxNHV3hOgROsb1Dagdg0cI4bAIIjiGy0msjgODWKNVFsHtFTrP3acho9LyvPhNFym_vd4QPAWKaBx9ANPBkEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086239247</pqid></control><display><type>article</type><title>On indecomposable sets with applications</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lorent, Andrew</creator><creatorcontrib>Lorent, Andrew</creatorcontrib><description>In this note we show the characteristic function of every indecomposable set \(F\) in the plane is \(BV\) equivalent to the characteristic function a closed set \(\mathbb{F}\), i.e. \(||\mathbb{1}_{F}-\mathbb{1}_{\mathbb{F}}||_{BV(\mathbb{R}^2)}=0\). We show by example this is false in dimension three and above. As a corollary to this result we show that for every \(\epsilon&gt;0\) a set of finite perimeter \(S\) can be approximated by a closed subset \(\mathbb{S}_{\epsilon}\) with finitely many indecomposable components and with the property that \(H^1(\partial^M \mathbb{S}_{\epsilon}\backslash \partial^M S)=0\) and \(||\mathbb{1}_{S}-\mathbb{1}_{\mathbb{S}_{\epsilon}}||_{BV(\mathbb{R}^2)}&lt;\epsilon\). We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are \(BV_l\) extension domains.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1305.3264</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Characteristic functions ; Domains</subject><ispartof>arXiv.org, 2013-10</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086239247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25730,27901,36988,44565</link.rule.ids></links><search><creatorcontrib>Lorent, Andrew</creatorcontrib><title>On indecomposable sets with applications</title><title>arXiv.org</title><description>In this note we show the characteristic function of every indecomposable set \(F\) in the plane is \(BV\) equivalent to the characteristic function a closed set \(\mathbb{F}\), i.e. \(||\mathbb{1}_{F}-\mathbb{1}_{\mathbb{F}}||_{BV(\mathbb{R}^2)}=0\). We show by example this is false in dimension three and above. As a corollary to this result we show that for every \(\epsilon&gt;0\) a set of finite perimeter \(S\) can be approximated by a closed subset \(\mathbb{S}_{\epsilon}\) with finitely many indecomposable components and with the property that \(H^1(\partial^M \mathbb{S}_{\epsilon}\backslash \partial^M S)=0\) and \(||\mathbb{1}_{S}-\mathbb{1}_{\mathbb{S}_{\epsilon}}||_{BV(\mathbb{R}^2)}&lt;\epsilon\). We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are \(BV_l\) extension domains.</description><subject>Characteristic functions</subject><subject>Domains</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzU1Lw0AQgOFFECy1d4-BXrwkzs7s7MdRil9Q6KX3MptuMCVNYjZVf76Cnt7b8yp1p6EynhkeZPpuPytNwBWhNVdqgUS69AbxRq1yPgEAWofMtFD3u75o-2Oqh_M4ZIldKnKac_HVzu-FjGPX1jK3Q59v1XUjXU6r_y7V_vlpv3ktt7uXt83jthTWrnQpBWKKxNHV3hOgROsb1Dagdg0cI4bAIIjiGy0msjgODWKNVFsHtFTrP3acho9LyvPhNFym_vd4QPAWKaBx9ANPBkEM</recordid><startdate>20131031</startdate><enddate>20131031</enddate><creator>Lorent, Andrew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131031</creationdate><title>On indecomposable sets with applications</title><author>Lorent, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-7ee9353b35b7c88302ab68f2169217f0db29950a22a8f1a4b5a759f22c23c6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Characteristic functions</topic><topic>Domains</topic><toplevel>online_resources</toplevel><creatorcontrib>Lorent, Andrew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorent, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On indecomposable sets with applications</atitle><jtitle>arXiv.org</jtitle><date>2013-10-31</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In this note we show the characteristic function of every indecomposable set \(F\) in the plane is \(BV\) equivalent to the characteristic function a closed set \(\mathbb{F}\), i.e. \(||\mathbb{1}_{F}-\mathbb{1}_{\mathbb{F}}||_{BV(\mathbb{R}^2)}=0\). We show by example this is false in dimension three and above. As a corollary to this result we show that for every \(\epsilon&gt;0\) a set of finite perimeter \(S\) can be approximated by a closed subset \(\mathbb{S}_{\epsilon}\) with finitely many indecomposable components and with the property that \(H^1(\partial^M \mathbb{S}_{\epsilon}\backslash \partial^M S)=0\) and \(||\mathbb{1}_{S}-\mathbb{1}_{\mathbb{S}_{\epsilon}}||_{BV(\mathbb{R}^2)}&lt;\epsilon\). We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are \(BV_l\) extension domains.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1305.3264</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086239247
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Characteristic functions
Domains
title On indecomposable sets with applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20indecomposable%20sets%20with%20applications&rft.jtitle=arXiv.org&rft.au=Lorent,%20Andrew&rft.date=2013-10-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1305.3264&rft_dat=%3Cproquest%3E2086239247%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a517-7ee9353b35b7c88302ab68f2169217f0db29950a22a8f1a4b5a759f22c23c6703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086239247&rft_id=info:pmid/&rfr_iscdi=true