Loading…
Modeling the long term dynamics of pre-vaccination pertussis
The dynamics of strongly immunizing childhood infections is still not well understood. Although reports of successful modeling of several incidence data records can be found in the literature, the key determinants of the observed temporal patterns have not been clearly identified. In particular, dif...
Saved in:
Published in: | arXiv.org 2012-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamics of strongly immunizing childhood infections is still not well understood. Although reports of successful modeling of several incidence data records can be found in the literature, the key determinants of the observed temporal patterns have not been clearly identified. In particular, different models of immunity waning and degree of protection applied to disease and vaccine induced immunity have been debated in the literature on pertussis. Here we study the effect of disease acquired immunity on the long term patterns of pertussis prevalence. We compare five minimal models, all of which are stochastic, seasonally forced, well-mixed models of infection based on susceptible-infective-recovered dynamics in a closed population. These models reflect different assumptions about the immune response of naive hosts, namely total permanent immunity, immunity waning, immunity waning together with immunity boosting, reinfection of recovered, and repeat infection after partial immunity waning. The power spectra of the output prevalence time series characterize the long term dynamics of the models. For epidemiological parameters consistent with published data for pertussis, the power spectra show quantitative and even qualitative differences that can be used to test their assumptions by comparison with ensembles of several decades long pre-vaccination data records. We illustrate this strategy on two publicly available historical data sets. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1104.5112 |