Loading…
Linear Logic by Levels and Bounded Time Complexity
We give a new characterization of elementary and deterministic polynomial time computation in linear logic through the proofs-as-programs correspondence. Girard's seminal results, concerning elementary and light linear logic, achieve this characterization by enforcing a stratification principle...
Saved in:
Published in: | arXiv.org 2009-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give a new characterization of elementary and deterministic polynomial time computation in linear logic through the proofs-as-programs correspondence. Girard's seminal results, concerning elementary and light linear logic, achieve this characterization by enforcing a stratification principle on proofs, using the notion of depth in proof nets. Here, we propose a more general form of stratification, based on inducing levels in proof nets by means of indexes, which allows us to extend Girard's systems while keeping the same complexity properties. In particular, it turns out that Girard's systems can be recovered by forcing depth and level to coincide. A consequence of the higher flexibility of levels with respect to depth is the absence of boxes for handling the paragraph modality. We use this fact to propose a variant of our polytime system in which the paragraph modality is only allowed on atoms, and which may thus serve as a basis for developing lambda-calculus type assignment systems with more efficient typing algorithms than existing ones. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0801.1253 |