Loading…

Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach

Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport propert...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-12
Main Authors: Bouras, I, A El, Fochler, O, Niemi, H, Z Xu, Greiner, C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bouras, I
A El
Fochler, O
Niemi, H
Z Xu
Greiner, C
description Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.
doi_str_mv 10.48550/arxiv.1201.5005
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086342294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086342294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-605c5e193acfb9debaa67eb6f90fbb74b894ec737cdd63a6240f553091611ac83</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMguKx79xjw3Prms82xFFfLrngpXpckTTHLmtSkFX--RT3NZWaeGYTuCJS8FgIedPr2XyWhQEoBIK7QhjJGippTeoN2OZ8BgMqKCsE26NAnHbKffQx4n-IH7ganL7iP-M1nG5eMX7R9x20MLuMu4AYffHCzt_g3OMU042aaUlxdt-h61Jfsdv-6Rf3-sW-fi-PrU9c2x0ILwgsJwgpHFNN2NGpwRmtZOSNHBaMxFTe14s5WrLLDIJmWlMO4TgVFJCHa1myL7v9qV-rn4vJ8OsclhZV4olBLtv5UnP0AYYJNyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086342294</pqid></control><display><type>article</type><title>Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach</title><source>Publicly Available Content Database</source><creator>Bouras, I ; A El ; Fochler, O ; Niemi, H ; Z Xu ; Greiner, C</creator><creatorcontrib>Bouras, I ; A El ; Fochler, O ; Niemi, H ; Z Xu ; Greiner, C</creatorcontrib><description>Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1201.5005</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cones ; Conical bodies ; Dependence ; Deposition ; Energetic particles ; Galling ; Ionic collisions ; Mach cones ; Mathematical models ; Projectiles ; Shear viscosity ; Transport properties</subject><ispartof>arXiv.org, 2013-12</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086342294?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>A El</creatorcontrib><creatorcontrib>Fochler, O</creatorcontrib><creatorcontrib>Niemi, H</creatorcontrib><creatorcontrib>Z Xu</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><title>Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach</title><title>arXiv.org</title><description>Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.</description><subject>Cones</subject><subject>Conical bodies</subject><subject>Dependence</subject><subject>Deposition</subject><subject>Energetic particles</subject><subject>Galling</subject><subject>Ionic collisions</subject><subject>Mach cones</subject><subject>Mathematical models</subject><subject>Projectiles</subject><subject>Shear viscosity</subject><subject>Transport properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LxDAYhIMguKx79xjw3Prms82xFFfLrngpXpckTTHLmtSkFX--RT3NZWaeGYTuCJS8FgIedPr2XyWhQEoBIK7QhjJGippTeoN2OZ8BgMqKCsE26NAnHbKffQx4n-IH7ganL7iP-M1nG5eMX7R9x20MLuMu4AYffHCzt_g3OMU042aaUlxdt-h61Jfsdv-6Rf3-sW-fi-PrU9c2x0ILwgsJwgpHFNN2NGpwRmtZOSNHBaMxFTe14s5WrLLDIJmWlMO4TgVFJCHa1myL7v9qV-rn4vJ8OsclhZV4olBLtv5UnP0AYYJNyQ</recordid><startdate>20131219</startdate><enddate>20131219</enddate><creator>Bouras, I</creator><creator>A El</creator><creator>Fochler, O</creator><creator>Niemi, H</creator><creator>Z Xu</creator><creator>Greiner, C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131219</creationdate><title>Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach</title><author>Bouras, I ; A El ; Fochler, O ; Niemi, H ; Z Xu ; Greiner, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-605c5e193acfb9debaa67eb6f90fbb74b894ec737cdd63a6240f553091611ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cones</topic><topic>Conical bodies</topic><topic>Dependence</topic><topic>Deposition</topic><topic>Energetic particles</topic><topic>Galling</topic><topic>Ionic collisions</topic><topic>Mach cones</topic><topic>Mathematical models</topic><topic>Projectiles</topic><topic>Shear viscosity</topic><topic>Transport properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>A El</creatorcontrib><creatorcontrib>Fochler, O</creatorcontrib><creatorcontrib>Niemi, H</creatorcontrib><creatorcontrib>Z Xu</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouras, I</au><au>A El</au><au>Fochler, O</au><au>Niemi, H</au><au>Z Xu</au><au>Greiner, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach</atitle><jtitle>arXiv.org</jtitle><date>2013-12-19</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1201.5005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086342294
source Publicly Available Content Database
subjects Cones
Conical bodies
Dependence
Deposition
Energetic particles
Galling
Ionic collisions
Mach cones
Mathematical models
Projectiles
Shear viscosity
Transport properties
title Transition From Ideal To Viscous Mach Cones In A Kinetic Transport Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20From%20Ideal%20To%20Viscous%20Mach%20Cones%20In%20A%20Kinetic%20Transport%20Approach&rft.jtitle=arXiv.org&rft.au=Bouras,%20I&rft.date=2013-12-19&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1201.5005&rft_dat=%3Cproquest%3E2086342294%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-605c5e193acfb9debaa67eb6f90fbb74b894ec737cdd63a6240f553091611ac83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086342294&rft_id=info:pmid/&rfr_iscdi=true