Loading…
Strategy Selection in Influence Diagrams using Imprecise Probabilities
This paper describes a new algorithm to solve the decision making problem in Influence Diagrams based on algorithms for credal networks. Decision nodes are associated to imprecise probability distributions and a reformulation is introduced that finds the global maximum strategy with respect to the e...
Saved in:
Published in: | arXiv.org 2012-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cassio Polpo de Campos Ji, Qiang |
description | This paper describes a new algorithm to solve the decision making problem in Influence Diagrams based on algorithms for credal networks. Decision nodes are associated to imprecise probability distributions and a reformulation is introduced that finds the global maximum strategy with respect to the expected utility. We work with Limited Memory Influence Diagrams, which generalize most Influence Diagram proposals and handle simultaneous decisions. Besides the global optimum method, we explore an anytime approximate solution with a guaranteed maximum error and show that imprecise probabilities are handled in a straightforward way. Complexity issues and experiments with random diagrams and an effects-based military planning problem are discussed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086394927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086394927</sourcerecordid><originalsourceid>FETCH-proquest_journals_20863949273</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzHp76wWuwl1l7TcllvSpOamg2-vgw_gdIbvbFgklTolZSrljsVEkxBC5oXMMhWxug1eBxjfvAUDfUBnOVre2MGsYHvgF9Sj1zPxldCOvJkXDz0S8Lt3ne7QYECgA9sO2hDEv-7Zsb4-zrdk8e61AoXn5FZvv_SUosxVlVayUP9dH-XlO7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086394927</pqid></control><display><type>article</type><title>Strategy Selection in Influence Diagrams using Imprecise Probabilities</title><source>ProQuest - Publicly Available Content Database</source><creator>Cassio Polpo de Campos ; Ji, Qiang</creator><creatorcontrib>Cassio Polpo de Campos ; Ji, Qiang</creatorcontrib><description>This paper describes a new algorithm to solve the decision making problem in Influence Diagrams based on algorithms for credal networks. Decision nodes are associated to imprecise probability distributions and a reformulation is introduced that finds the global maximum strategy with respect to the expected utility. We work with Limited Memory Influence Diagrams, which generalize most Influence Diagram proposals and handle simultaneous decisions. Besides the global optimum method, we explore an anytime approximate solution with a guaranteed maximum error and show that imprecise probabilities are handled in a straightforward way. Complexity issues and experiments with random diagrams and an effects-based military planning problem are discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decision analysis ; Decision making ; Expected utility ; Maximum strategies</subject><ispartof>arXiv.org, 2012-06</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086394927?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cassio Polpo de Campos</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><title>Strategy Selection in Influence Diagrams using Imprecise Probabilities</title><title>arXiv.org</title><description>This paper describes a new algorithm to solve the decision making problem in Influence Diagrams based on algorithms for credal networks. Decision nodes are associated to imprecise probability distributions and a reformulation is introduced that finds the global maximum strategy with respect to the expected utility. We work with Limited Memory Influence Diagrams, which generalize most Influence Diagram proposals and handle simultaneous decisions. Besides the global optimum method, we explore an anytime approximate solution with a guaranteed maximum error and show that imprecise probabilities are handled in a straightforward way. Complexity issues and experiments with random diagrams and an effects-based military planning problem are discussed.</description><subject>Algorithms</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Expected utility</subject><subject>Maximum strategies</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzHp76wWuwl1l7TcllvSpOamg2-vgw_gdIbvbFgklTolZSrljsVEkxBC5oXMMhWxug1eBxjfvAUDfUBnOVre2MGsYHvgF9Sj1zPxldCOvJkXDz0S8Lt3ne7QYECgA9sO2hDEv-7Zsb4-zrdk8e61AoXn5FZvv_SUosxVlVayUP9dH-XlO7A</recordid><startdate>20120613</startdate><enddate>20120613</enddate><creator>Cassio Polpo de Campos</creator><creator>Ji, Qiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120613</creationdate><title>Strategy Selection in Influence Diagrams using Imprecise Probabilities</title><author>Cassio Polpo de Campos ; Ji, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20863949273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Expected utility</topic><topic>Maximum strategies</topic><toplevel>online_resources</toplevel><creatorcontrib>Cassio Polpo de Campos</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassio Polpo de Campos</au><au>Ji, Qiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Strategy Selection in Influence Diagrams using Imprecise Probabilities</atitle><jtitle>arXiv.org</jtitle><date>2012-06-13</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>This paper describes a new algorithm to solve the decision making problem in Influence Diagrams based on algorithms for credal networks. Decision nodes are associated to imprecise probability distributions and a reformulation is introduced that finds the global maximum strategy with respect to the expected utility. We work with Limited Memory Influence Diagrams, which generalize most Influence Diagram proposals and handle simultaneous decisions. Besides the global optimum method, we explore an anytime approximate solution with a guaranteed maximum error and show that imprecise probabilities are handled in a straightforward way. Complexity issues and experiments with random diagrams and an effects-based military planning problem are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086394927 |
source | ProQuest - Publicly Available Content Database |
subjects | Algorithms Decision analysis Decision making Expected utility Maximum strategies |
title | Strategy Selection in Influence Diagrams using Imprecise Probabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Strategy%20Selection%20in%20Influence%20Diagrams%20using%20Imprecise%20Probabilities&rft.jtitle=arXiv.org&rft.au=Cassio%20Polpo%20de%20Campos&rft.date=2012-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086394927%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20863949273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086394927&rft_id=info:pmid/&rfr_iscdi=true |