Loading…

Lag synchronization and scaling of chaotic attractor in coupled system

We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2012-06
Main Authors: Bhowmick, Sourav K, Pal, Pinaki, Roy, Prodyot K, Dana, Syamal K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bhowmick, Sourav K
Pal, Pinaki
Roy, Prodyot K
Dana, Syamal K
description We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.
doi_str_mv 10.48550/arxiv.1206.6723
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086397137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086397137</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-21d69a78181a1b16448f10849e8d5a08cc08d96c49db05a5c08bd84105386c9d3</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMgWGr3LgOup-bla5KlFKvCQDfdlzfJTJsyJnWSEeuvd0BXl8u5nEvIA7C1NEqxJxy_w9caONNrXXNxQxZcCKiM5PyOrHI-M8b4TJQSC7Jt8EjzNbrTmGL4wRJSpBg9zQ6HEI809dSdMJXgKJYyoitppCFSl6bL0M27ay7dxz257XHI3eo_l2S_fdlv3qpm9_q-eW4qVFBXHLy2WBswgNCCltL0wIy0nfEKmXGOGW-1k9a3TKGaa-uNBKaE0c56sSSPf9rLmD6nLpfDOU1jnB8PnBktbA2iFr9P90xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086397137</pqid></control><display><type>article</type><title>Lag synchronization and scaling of chaotic attractor in coupled system</title><source>Publicly Available Content Database</source><creator>Bhowmick, Sourav K ; Pal, Pinaki ; Roy, Prodyot K ; Dana, Syamal K</creator><creatorcontrib>Bhowmick, Sourav K ; Pal, Pinaki ; Roy, Prodyot K ; Dana, Syamal K</creatorcontrib><description>We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1206.6723</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Attenuation ; Chaos theory ; Circuits ; Coupling ; Delay lines ; Electronic circuits ; Mathematical models ; Oscillators ; Response time ; Scaling ; Stability ; Synchronism ; Three dimensional models</subject><ispartof>arXiv.org, 2012-06</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086397137?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Bhowmick, Sourav K</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Roy, Prodyot K</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><title>Lag synchronization and scaling of chaotic attractor in coupled system</title><title>arXiv.org</title><description>We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.</description><subject>Attenuation</subject><subject>Chaos theory</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Delay lines</subject><subject>Electronic circuits</subject><subject>Mathematical models</subject><subject>Oscillators</subject><subject>Response time</subject><subject>Scaling</subject><subject>Stability</subject><subject>Synchronism</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEURYMgWGr3LgOup-bla5KlFKvCQDfdlzfJTJsyJnWSEeuvd0BXl8u5nEvIA7C1NEqxJxy_w9caONNrXXNxQxZcCKiM5PyOrHI-M8b4TJQSC7Jt8EjzNbrTmGL4wRJSpBg9zQ6HEI809dSdMJXgKJYyoitppCFSl6bL0M27ay7dxz257XHI3eo_l2S_fdlv3qpm9_q-eW4qVFBXHLy2WBswgNCCltL0wIy0nfEKmXGOGW-1k9a3TKGaa-uNBKaE0c56sSSPf9rLmD6nLpfDOU1jnB8PnBktbA2iFr9P90xd</recordid><startdate>20120628</startdate><enddate>20120628</enddate><creator>Bhowmick, Sourav K</creator><creator>Pal, Pinaki</creator><creator>Roy, Prodyot K</creator><creator>Dana, Syamal K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120628</creationdate><title>Lag synchronization and scaling of chaotic attractor in coupled system</title><author>Bhowmick, Sourav K ; Pal, Pinaki ; Roy, Prodyot K ; Dana, Syamal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-21d69a78181a1b16448f10849e8d5a08cc08d96c49db05a5c08bd84105386c9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Attenuation</topic><topic>Chaos theory</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Delay lines</topic><topic>Electronic circuits</topic><topic>Mathematical models</topic><topic>Oscillators</topic><topic>Response time</topic><topic>Scaling</topic><topic>Stability</topic><topic>Synchronism</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Bhowmick, Sourav K</creatorcontrib><creatorcontrib>Pal, Pinaki</creatorcontrib><creatorcontrib>Roy, Prodyot K</creatorcontrib><creatorcontrib>Dana, Syamal K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhowmick, Sourav K</au><au>Pal, Pinaki</au><au>Roy, Prodyot K</au><au>Dana, Syamal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lag synchronization and scaling of chaotic attractor in coupled system</atitle><jtitle>arXiv.org</jtitle><date>2012-06-28</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>We report a design of delay coupling for lag synchronization in two unidirectionally coupled chaotic oscillators. A delay term is introduced in the definition of the coupling to target any desired lag between the driver and the response. The stability of the lag synchronization is ensured by using the Hurwitz matrix stability. We are able to scale up or down the size of a driver attractor at a response system in presence of a lag. This allows compensating the attenuation of the amplitude of a signal during transmission through a delay line. The delay coupling is illustrated with numerical examples of 3D systems, the Hindmarsh-Rose neuron model, the R\"ossler system and a Sprott system and, a 4D system. We implemented the coupling in electronic circuit to realize any desired lag synchronization in chaotic oscillators and scaling of attractors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1206.6723</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086397137
source Publicly Available Content Database
subjects Attenuation
Chaos theory
Circuits
Coupling
Delay lines
Electronic circuits
Mathematical models
Oscillators
Response time
Scaling
Stability
Synchronism
Three dimensional models
title Lag synchronization and scaling of chaotic attractor in coupled system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lag%20synchronization%20and%20scaling%20of%20chaotic%20attractor%20in%20coupled%20system&rft.jtitle=arXiv.org&rft.au=Bhowmick,%20Sourav%20K&rft.date=2012-06-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1206.6723&rft_dat=%3Cproquest%3E2086397137%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a517-21d69a78181a1b16448f10849e8d5a08cc08d96c49db05a5c08bd84105386c9d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086397137&rft_id=info:pmid/&rfr_iscdi=true