Loading…
The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders
A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and o...
Saved in:
Published in: | arXiv.org 2011-02 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dennis P M van Gils Gert-Wim Bruggert Lathrop, Daniel P Sun, Chao Lohse, Detlef |
description | A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up to 3.4 x 10^6 with water as working fluid. With this Taylor-Couette system, the parameter space (Re_i, Re_o, {\eta}) extends to (2.0 x 10^6, {\pm}1.4 x 10^6, 0.716-0.909). The system is equipped with bubble injectors, temperature control, skin-friction drag sensors, and several local sensors for studying turbulent single-phase and two-phase flows. Inner cylinder load cells detect skin-friction drag via torque measurements. The clear acrylic outer cylinder allows the dynamics of the liquid flow and the dispersed phase (bubbles, particles, fibers, etc.) inside the gap to be investigated with specialized local sensors and nonintrusive optical imaging techniques. The system allows study of both Taylor-Couette flow in a high-Reynolds-number regime, and the mechanisms behind skin-friction drag alterations due to bubble injection, polymer injection, and surface hydrophobicity and roughness. |
doi_str_mv | 10.48550/arxiv.1011.1572 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086410680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086410680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-1c3b5c9429a61e6a7f1e0eb70d14a93ff17b72833049927a24bf9a9be8a4e3c93</originalsourceid><addsrcrecordid>eNpNTc1LwzAcDYLgmLt7DHiZh858No03KTqFgQd7H0n369YRk5mm1v4B_t9W9ODlvQfvC6ErSlaikJLcmvjZfqwooXRFpWJnaMY4p1khGLtAi647EkJYrpiUfIa-qgPgagCfAKc-2t5NEldmdCFmZeghTcay4uUNbkzdujaNd_g1xeD3bvzXWL71LrWng-lgSrowYAtpAPA4DQG3fgcnmMCnqRVDMqn1e1yP7seJ3SU6b4zrYPHHc1Q9PlTlU7Z5WT-X95vMSEoyWnMray2YNjmF3KiGAgGryI4Ko3nTUGUVKzgnQmumDBO20UZbKIwAXms-R9e_s6cY3nvo0vYY-uinxy0jRS4oyQvCvwGBcmR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086410680</pqid></control><display><type>article</type><title>The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders</title><source>Publicly Available Content Database</source><creator>Dennis P M van Gils ; Gert-Wim Bruggert ; Lathrop, Daniel P ; Sun, Chao ; Lohse, Detlef</creator><creatorcontrib>Dennis P M van Gils ; Gert-Wim Bruggert ; Lathrop, Daniel P ; Sun, Chao ; Lohse, Detlef</creatorcontrib><description>A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up to 3.4 x 10^6 with water as working fluid. With this Taylor-Couette system, the parameter space (Re_i, Re_o, {\eta}) extends to (2.0 x 10^6, {\pm}1.4 x 10^6, 0.716-0.909). The system is equipped with bubble injectors, temperature control, skin-friction drag sensors, and several local sensors for studying turbulent single-phase and two-phase flows. Inner cylinder load cells detect skin-friction drag via torque measurements. The clear acrylic outer cylinder allows the dynamics of the liquid flow and the dispersed phase (bubbles, particles, fibers, etc.) inside the gap to be investigated with specialized local sensors and nonintrusive optical imaging techniques. The system allows study of both Taylor-Couette flow in a high-Reynolds-number regime, and the mechanisms behind skin-friction drag alterations due to bubble injection, polymer injection, and surface hydrophobicity and roughness.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1011.1572</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Couette flow ; Fluid dynamics ; Fluid flow ; Friction ; Friction drag ; Hydrophobicity ; Imaging techniques ; Liquid flow ; Load cells ; Rotating cylinders ; Rotation ; Sensors ; Skin friction ; Temperature control ; Turbulent flow ; Two phase flow ; Working fluids</subject><ispartof>arXiv.org, 2011-02</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086410680?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Dennis P M van Gils</creatorcontrib><creatorcontrib>Gert-Wim Bruggert</creatorcontrib><creatorcontrib>Lathrop, Daniel P</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><title>The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders</title><title>arXiv.org</title><description>A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up to 3.4 x 10^6 with water as working fluid. With this Taylor-Couette system, the parameter space (Re_i, Re_o, {\eta}) extends to (2.0 x 10^6, {\pm}1.4 x 10^6, 0.716-0.909). The system is equipped with bubble injectors, temperature control, skin-friction drag sensors, and several local sensors for studying turbulent single-phase and two-phase flows. Inner cylinder load cells detect skin-friction drag via torque measurements. The clear acrylic outer cylinder allows the dynamics of the liquid flow and the dispersed phase (bubbles, particles, fibers, etc.) inside the gap to be investigated with specialized local sensors and nonintrusive optical imaging techniques. The system allows study of both Taylor-Couette flow in a high-Reynolds-number regime, and the mechanisms behind skin-friction drag alterations due to bubble injection, polymer injection, and surface hydrophobicity and roughness.</description><subject>Couette flow</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction</subject><subject>Friction drag</subject><subject>Hydrophobicity</subject><subject>Imaging techniques</subject><subject>Liquid flow</subject><subject>Load cells</subject><subject>Rotating cylinders</subject><subject>Rotation</subject><subject>Sensors</subject><subject>Skin friction</subject><subject>Temperature control</subject><subject>Turbulent flow</subject><subject>Two phase flow</subject><subject>Working fluids</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNTc1LwzAcDYLgmLt7DHiZh858No03KTqFgQd7H0n369YRk5mm1v4B_t9W9ODlvQfvC6ErSlaikJLcmvjZfqwooXRFpWJnaMY4p1khGLtAi647EkJYrpiUfIa-qgPgagCfAKc-2t5NEldmdCFmZeghTcay4uUNbkzdujaNd_g1xeD3bvzXWL71LrWng-lgSrowYAtpAPA4DQG3fgcnmMCnqRVDMqn1e1yP7seJ3SU6b4zrYPHHc1Q9PlTlU7Z5WT-X95vMSEoyWnMray2YNjmF3KiGAgGryI4Ko3nTUGUVKzgnQmumDBO20UZbKIwAXms-R9e_s6cY3nvo0vYY-uinxy0jRS4oyQvCvwGBcmR5</recordid><startdate>20110223</startdate><enddate>20110223</enddate><creator>Dennis P M van Gils</creator><creator>Gert-Wim Bruggert</creator><creator>Lathrop, Daniel P</creator><creator>Sun, Chao</creator><creator>Lohse, Detlef</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110223</creationdate><title>The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders</title><author>Dennis P M van Gils ; Gert-Wim Bruggert ; Lathrop, Daniel P ; Sun, Chao ; Lohse, Detlef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-1c3b5c9429a61e6a7f1e0eb70d14a93ff17b72833049927a24bf9a9be8a4e3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Couette flow</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction</topic><topic>Friction drag</topic><topic>Hydrophobicity</topic><topic>Imaging techniques</topic><topic>Liquid flow</topic><topic>Load cells</topic><topic>Rotating cylinders</topic><topic>Rotation</topic><topic>Sensors</topic><topic>Skin friction</topic><topic>Temperature control</topic><topic>Turbulent flow</topic><topic>Two phase flow</topic><topic>Working fluids</topic><toplevel>online_resources</toplevel><creatorcontrib>Dennis P M van Gils</creatorcontrib><creatorcontrib>Gert-Wim Bruggert</creatorcontrib><creatorcontrib>Lathrop, Daniel P</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dennis P M van Gils</au><au>Gert-Wim Bruggert</au><au>Lathrop, Daniel P</au><au>Sun, Chao</au><au>Lohse, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders</atitle><jtitle>arXiv.org</jtitle><date>2011-02-23</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>A new turbulent Taylor-Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and outer cylinder are 20 and 10 Hz, respectively, resulting in Reynolds numbers up to 3.4 x 10^6 with water as working fluid. With this Taylor-Couette system, the parameter space (Re_i, Re_o, {\eta}) extends to (2.0 x 10^6, {\pm}1.4 x 10^6, 0.716-0.909). The system is equipped with bubble injectors, temperature control, skin-friction drag sensors, and several local sensors for studying turbulent single-phase and two-phase flows. Inner cylinder load cells detect skin-friction drag via torque measurements. The clear acrylic outer cylinder allows the dynamics of the liquid flow and the dispersed phase (bubbles, particles, fibers, etc.) inside the gap to be investigated with specialized local sensors and nonintrusive optical imaging techniques. The system allows study of both Taylor-Couette flow in a high-Reynolds-number regime, and the mechanisms behind skin-friction drag alterations due to bubble injection, polymer injection, and surface hydrophobicity and roughness.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1011.1572</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086410680 |
source | Publicly Available Content Database |
subjects | Couette flow Fluid dynamics Fluid flow Friction Friction drag Hydrophobicity Imaging techniques Liquid flow Load cells Rotating cylinders Rotation Sensors Skin friction Temperature control Turbulent flow Two phase flow Working fluids |
title | The Twente turbulent Taylor-Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Twente%20turbulent%20Taylor-Couette%20(T3C)%20facility:%20Strongly%20turbulent%20(multiphase)%20flow%20between%20two%20independently%20rotating%20cylinders&rft.jtitle=arXiv.org&rft.au=Dennis%20P%20M%20van%20Gils&rft.date=2011-02-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1011.1572&rft_dat=%3Cproquest%3E2086410680%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-1c3b5c9429a61e6a7f1e0eb70d14a93ff17b72833049927a24bf9a9be8a4e3c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086410680&rft_id=info:pmid/&rfr_iscdi=true |