Loading…

Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices

The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of the corner transfer matrix renormalization group method using a recursi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2012-07
Main Authors: Gendiar, Andrej, Krcmar, Roman, Andergassen, Sabine, Daniska, Michal, Nishino, Tomotoshi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gendiar, Andrej
Krcmar, Roman
Andergassen, Sabine
Daniska, Michal
Nishino, Tomotoshi
description The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of the corner transfer matrix renormalization group method using a recursive construction of asymmetric transfer matrices. Studying the phase transition, the mean-field universality is captured by means of a precise analysis of thermodynamic functions. The correlation functions and the density matrix spectra always decay exponentially even at the transition point, whereas power law behavior characterizes criticality on the Euclidean flat geometry. We confirm the absence of a finite correlation length in the limit of infinite negative Gaussian curvature.
doi_str_mv 10.48550/arxiv.1205.3850
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086491541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086491541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-815522d9c0b2ce78a612d30ff1b53ae970c31f0d3b39af69d041e4e6267000fd3</originalsourceid><addsrcrecordid>eNotj0tLAzEUhYMgWGr3LgOuZ7x5zWMpxUeh4MKCy5JJbtrUOFOTjOi_N6Crszjwne8QcsOglp1ScKfjt_-qGQdVi07BBVlwIVjVSc6vyCqlEwDwpuVKiQV5fUP9Ts0UIwad_TRSdA5NTtSPNB-RbpIfD_RjshhoaXP0ejzMQccq-4CWHn_OGIcpeEMLIHuD6ZpcOh0Srv5zSXaPD7v1c7V9edqs77eVVqz4MKU4t72BgRtsO90wbgU4xwYlNPYtGMEcWDGIXrumtyAZSmyKejngrFiS2z_sOU6fM6a8P01zHMvinkPXyJ4pycQvBsVRcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086491541</pqid></control><display><type>article</type><title>Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices</title><source>Publicly Available Content Database</source><creator>Gendiar, Andrej ; Krcmar, Roman ; Andergassen, Sabine ; Daniska, Michal ; Nishino, Tomotoshi</creator><creatorcontrib>Gendiar, Andrej ; Krcmar, Roman ; Andergassen, Sabine ; Daniska, Michal ; Nishino, Tomotoshi</creatorcontrib><description>The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of the corner transfer matrix renormalization group method using a recursive construction of asymmetric transfer matrices. Studying the phase transition, the mean-field universality is captured by means of a precise analysis of thermodynamic functions. The correlation functions and the density matrix spectra always decay exponentially even at the transition point, whereas power law behavior characterizes criticality on the Euclidean flat geometry. We confirm the absence of a finite correlation length in the limit of infinite negative Gaussian curvature.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1205.3850</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Correlation analysis ; Curvature ; Euclidean geometry ; Ising model ; Lattices ; Mathematical models ; Phase transitions ; Recursive methods ; Tessellation ; Transfer matrices ; Transition points ; Triangles ; Two dimensional models</subject><ispartof>arXiv.org, 2012-07</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086491541?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gendiar, Andrej</creatorcontrib><creatorcontrib>Krcmar, Roman</creatorcontrib><creatorcontrib>Andergassen, Sabine</creatorcontrib><creatorcontrib>Daniska, Michal</creatorcontrib><creatorcontrib>Nishino, Tomotoshi</creatorcontrib><title>Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices</title><title>arXiv.org</title><description>The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of the corner transfer matrix renormalization group method using a recursive construction of asymmetric transfer matrices. Studying the phase transition, the mean-field universality is captured by means of a precise analysis of thermodynamic functions. The correlation functions and the density matrix spectra always decay exponentially even at the transition point, whereas power law behavior characterizes criticality on the Euclidean flat geometry. We confirm the absence of a finite correlation length in the limit of infinite negative Gaussian curvature.</description><subject>Correlation analysis</subject><subject>Curvature</subject><subject>Euclidean geometry</subject><subject>Ising model</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Phase transitions</subject><subject>Recursive methods</subject><subject>Tessellation</subject><subject>Transfer matrices</subject><subject>Transition points</subject><subject>Triangles</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0tLAzEUhYMgWGr3LgOuZ7x5zWMpxUeh4MKCy5JJbtrUOFOTjOi_N6Crszjwne8QcsOglp1ScKfjt_-qGQdVi07BBVlwIVjVSc6vyCqlEwDwpuVKiQV5fUP9Ts0UIwad_TRSdA5NTtSPNB-RbpIfD_RjshhoaXP0ejzMQccq-4CWHn_OGIcpeEMLIHuD6ZpcOh0Srv5zSXaPD7v1c7V9edqs77eVVqz4MKU4t72BgRtsO90wbgU4xwYlNPYtGMEcWDGIXrumtyAZSmyKejngrFiS2z_sOU6fM6a8P01zHMvinkPXyJ4pycQvBsVRcw</recordid><startdate>20120725</startdate><enddate>20120725</enddate><creator>Gendiar, Andrej</creator><creator>Krcmar, Roman</creator><creator>Andergassen, Sabine</creator><creator>Daniska, Michal</creator><creator>Nishino, Tomotoshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120725</creationdate><title>Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices</title><author>Gendiar, Andrej ; Krcmar, Roman ; Andergassen, Sabine ; Daniska, Michal ; Nishino, Tomotoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-815522d9c0b2ce78a612d30ff1b53ae970c31f0d3b39af69d041e4e6267000fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation analysis</topic><topic>Curvature</topic><topic>Euclidean geometry</topic><topic>Ising model</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Phase transitions</topic><topic>Recursive methods</topic><topic>Tessellation</topic><topic>Transfer matrices</topic><topic>Transition points</topic><topic>Triangles</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gendiar, Andrej</creatorcontrib><creatorcontrib>Krcmar, Roman</creatorcontrib><creatorcontrib>Andergassen, Sabine</creatorcontrib><creatorcontrib>Daniska, Michal</creatorcontrib><creatorcontrib>Nishino, Tomotoshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gendiar, Andrej</au><au>Krcmar, Roman</au><au>Andergassen, Sabine</au><au>Daniska, Michal</au><au>Nishino, Tomotoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices</atitle><jtitle>arXiv.org</jtitle><date>2012-07-25</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The Ising model is studied on a series of hyperbolic two-dimensional lattices which are formed by tessellation of triangles on negatively curved surfaces. In order to treat the hyperbolic lattices, we propose a generalization of the corner transfer matrix renormalization group method using a recursive construction of asymmetric transfer matrices. Studying the phase transition, the mean-field universality is captured by means of a precise analysis of thermodynamic functions. The correlation functions and the density matrix spectra always decay exponentially even at the transition point, whereas power law behavior characterizes criticality on the Euclidean flat geometry. We confirm the absence of a finite correlation length in the limit of infinite negative Gaussian curvature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1205.3850</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086491541
source Publicly Available Content Database
subjects Correlation analysis
Curvature
Euclidean geometry
Ising model
Lattices
Mathematical models
Phase transitions
Recursive methods
Tessellation
Transfer matrices
Transition points
Triangles
Two dimensional models
title Weak correlation effects in the Ising model on triangular-tiled hyperbolic lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20correlation%20effects%20in%20the%20Ising%20model%20on%20triangular-tiled%20hyperbolic%20lattices&rft.jtitle=arXiv.org&rft.au=Gendiar,%20Andrej&rft.date=2012-07-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1205.3850&rft_dat=%3Cproquest%3E2086491541%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-815522d9c0b2ce78a612d30ff1b53ae970c31f0d3b39af69d041e4e6267000fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086491541&rft_id=info:pmid/&rfr_iscdi=true