Loading…

Extensions of linear regression models based on set arithmetic for interval data

Extensions of previous linear regression models for interval data are presented. A more flexible simple linear model is formalized. The new model may express cross-relationships between mid-points and spreads of the interval data in a unique equation based on the interval arithmetic. Moreover, exten...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2012-10
Main Authors: Blanco-Fernández, Angela, García-Bárzana, Marta, Colubi, Ana, Kontoghiorghes, Erricos J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Blanco-Fernández, Angela
García-Bárzana, Marta
Colubi, Ana
Kontoghiorghes, Erricos J
description Extensions of previous linear regression models for interval data are presented. A more flexible simple linear model is formalized. The new model may express cross-relationships between mid-points and spreads of the interval data in a unique equation based on the interval arithmetic. Moreover, extensions to the multiple case are addressed. The associated least-squares estimation problem are solved. Empirical results and a real-life application are presented in order to show the applicability and the differences among the proposed models.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086601404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086601404</sourcerecordid><originalsourceid>FETCH-proquest_journals_20866014043</originalsourceid><addsrcrecordid>eNqNikEKwjAQRYMgWLR3GHBdSJO2di8Vly7cl2inmpImOpOKx7eCB3D1ee_9hUiU1nlWF0qtRMo8SClVtVNlqRNxat4RPdvgGUIPzno0BIQ3Qv5aGEOHjuFiGDuYmTGCIRvvI0Z7hT4QWB-RXsZBZ6LZiGVvHGP627XYHprz_pg9KDwn5NgOYSI_p1bJuqpkXshC__f6AKI9P1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086601404</pqid></control><display><type>article</type><title>Extensions of linear regression models based on set arithmetic for interval data</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Blanco-Fernández, Angela ; García-Bárzana, Marta ; Colubi, Ana ; Kontoghiorghes, Erricos J</creator><creatorcontrib>Blanco-Fernández, Angela ; García-Bárzana, Marta ; Colubi, Ana ; Kontoghiorghes, Erricos J</creatorcontrib><description>Extensions of previous linear regression models for interval data are presented. A more flexible simple linear model is formalized. The new model may express cross-relationships between mid-points and spreads of the interval data in a unique equation based on the interval arithmetic. Moreover, extensions to the multiple case are addressed. The associated least-squares estimation problem are solved. Empirical results and a real-life application are presented in order to show the applicability and the differences among the proposed models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Interval arithmetic ; Regression analysis ; Regression models</subject><ispartof>arXiv.org, 2012-10</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086601404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Blanco-Fernández, Angela</creatorcontrib><creatorcontrib>García-Bárzana, Marta</creatorcontrib><creatorcontrib>Colubi, Ana</creatorcontrib><creatorcontrib>Kontoghiorghes, Erricos J</creatorcontrib><title>Extensions of linear regression models based on set arithmetic for interval data</title><title>arXiv.org</title><description>Extensions of previous linear regression models for interval data are presented. A more flexible simple linear model is formalized. The new model may express cross-relationships between mid-points and spreads of the interval data in a unique equation based on the interval arithmetic. Moreover, extensions to the multiple case are addressed. The associated least-squares estimation problem are solved. Empirical results and a real-life application are presented in order to show the applicability and the differences among the proposed models.</description><subject>Interval arithmetic</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQRYMgWLR3GHBdSJO2di8Vly7cl2inmpImOpOKx7eCB3D1ee_9hUiU1nlWF0qtRMo8SClVtVNlqRNxat4RPdvgGUIPzno0BIQ3Qv5aGEOHjuFiGDuYmTGCIRvvI0Z7hT4QWB-RXsZBZ6LZiGVvHGP627XYHprz_pg9KDwn5NgOYSI_p1bJuqpkXshC__f6AKI9P1A</recordid><startdate>20121022</startdate><enddate>20121022</enddate><creator>Blanco-Fernández, Angela</creator><creator>García-Bárzana, Marta</creator><creator>Colubi, Ana</creator><creator>Kontoghiorghes, Erricos J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121022</creationdate><title>Extensions of linear regression models based on set arithmetic for interval data</title><author>Blanco-Fernández, Angela ; García-Bárzana, Marta ; Colubi, Ana ; Kontoghiorghes, Erricos J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20866014043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Interval arithmetic</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>online_resources</toplevel><creatorcontrib>Blanco-Fernández, Angela</creatorcontrib><creatorcontrib>García-Bárzana, Marta</creatorcontrib><creatorcontrib>Colubi, Ana</creatorcontrib><creatorcontrib>Kontoghiorghes, Erricos J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco-Fernández, Angela</au><au>García-Bárzana, Marta</au><au>Colubi, Ana</au><au>Kontoghiorghes, Erricos J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extensions of linear regression models based on set arithmetic for interval data</atitle><jtitle>arXiv.org</jtitle><date>2012-10-22</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>Extensions of previous linear regression models for interval data are presented. A more flexible simple linear model is formalized. The new model may express cross-relationships between mid-points and spreads of the interval data in a unique equation based on the interval arithmetic. Moreover, extensions to the multiple case are addressed. The associated least-squares estimation problem are solved. Empirical results and a real-life application are presented in order to show the applicability and the differences among the proposed models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086601404
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Interval arithmetic
Regression analysis
Regression models
title Extensions of linear regression models based on set arithmetic for interval data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extensions%20of%20linear%20regression%20models%20based%20on%20set%20arithmetic%20for%20interval%20data&rft.jtitle=arXiv.org&rft.au=Blanco-Fern%C3%A1ndez,%20Angela&rft.date=2012-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086601404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20866014043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086601404&rft_id=info:pmid/&rfr_iscdi=true