Loading…

Evidence-invariant Sensitivity Bounds

The sensitivities revealed by a sensitivity analysis of a probabilistic network typically depend on the entered evidence. For a real-life network therefore, the analysis is performed a number of times, with different evidence. Although efficient algorithms for sensitivity analysis exist, a complete...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2012-07
Main Authors: Renooij, Silja, Linda C van der Gaag
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Renooij, Silja
Linda C van der Gaag
description The sensitivities revealed by a sensitivity analysis of a probabilistic network typically depend on the entered evidence. For a real-life network therefore, the analysis is performed a number of times, with different evidence. Although efficient algorithms for sensitivity analysis exist, a complete analysis is often infeasible because of the large range of possible combinations of observations. In this paper we present a method for studying sensitivities that are invariant to the evidence entered. Our method builds upon the idea of establishing bounds between which a parameter can be varied without ever inducing a change in the most likely value of a variable of interest.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086613641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086613641</sourcerecordid><originalsourceid>FETCH-proquest_journals_20866136413</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdS3LTEnNS07VzcwrSyzKTMwrUQhOzSvOLMksyyypVHDKL81LKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszM0NjMxNDY-JUAQAxvy9m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086613641</pqid></control><display><type>article</type><title>Evidence-invariant Sensitivity Bounds</title><source>Publicly Available Content (ProQuest)</source><creator>Renooij, Silja ; Linda C van der Gaag</creator><creatorcontrib>Renooij, Silja ; Linda C van der Gaag</creatorcontrib><description>The sensitivities revealed by a sensitivity analysis of a probabilistic network typically depend on the entered evidence. For a real-life network therefore, the analysis is performed a number of times, with different evidence. Although efficient algorithms for sensitivity analysis exist, a complete analysis is often infeasible because of the large range of possible combinations of observations. In this paper we present a method for studying sensitivities that are invariant to the evidence entered. Our method builds upon the idea of establishing bounds between which a parameter can be varied without ever inducing a change in the most likely value of a variable of interest.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Invariants ; Sensitivity analysis</subject><ispartof>arXiv.org, 2012-07</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086613641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Renooij, Silja</creatorcontrib><creatorcontrib>Linda C van der Gaag</creatorcontrib><title>Evidence-invariant Sensitivity Bounds</title><title>arXiv.org</title><description>The sensitivities revealed by a sensitivity analysis of a probabilistic network typically depend on the entered evidence. For a real-life network therefore, the analysis is performed a number of times, with different evidence. Although efficient algorithms for sensitivity analysis exist, a complete analysis is often infeasible because of the large range of possible combinations of observations. In this paper we present a method for studying sensitivities that are invariant to the evidence entered. Our method builds upon the idea of establishing bounds between which a parameter can be varied without ever inducing a change in the most likely value of a variable of interest.</description><subject>Algorithms</subject><subject>Invariants</subject><subject>Sensitivity analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdS3LTEnNS07VzcwrSyzKTMwrUQhOzSvOLMksyyypVHDKL81LKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszM0NjMxNDY-JUAQAxvy9m</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Renooij, Silja</creator><creator>Linda C van der Gaag</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20120711</creationdate><title>Evidence-invariant Sensitivity Bounds</title><author>Renooij, Silja ; Linda C van der Gaag</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20866136413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Invariants</topic><topic>Sensitivity analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Renooij, Silja</creatorcontrib><creatorcontrib>Linda C van der Gaag</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renooij, Silja</au><au>Linda C van der Gaag</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evidence-invariant Sensitivity Bounds</atitle><jtitle>arXiv.org</jtitle><date>2012-07-11</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>The sensitivities revealed by a sensitivity analysis of a probabilistic network typically depend on the entered evidence. For a real-life network therefore, the analysis is performed a number of times, with different evidence. Although efficient algorithms for sensitivity analysis exist, a complete analysis is often infeasible because of the large range of possible combinations of observations. In this paper we present a method for studying sensitivities that are invariant to the evidence entered. Our method builds upon the idea of establishing bounds between which a parameter can be varied without ever inducing a change in the most likely value of a variable of interest.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2012-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086613641
source Publicly Available Content (ProQuest)
subjects Algorithms
Invariants
Sensitivity analysis
title Evidence-invariant Sensitivity Bounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evidence-invariant%20Sensitivity%20Bounds&rft.jtitle=arXiv.org&rft.au=Renooij,%20Silja&rft.date=2012-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086613641%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20866136413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086613641&rft_id=info:pmid/&rfr_iscdi=true