Loading…
Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces
In 1955, A. Grothendieck has shown that if the linear operator \(T\) in a Banach subspace of an \(L_\infty\)-space is 2/3-nuclear then the trace of \(T\) is well defined and is equal to the sum of all eigenvalues \(\{\mu_k(T)\}\) of \(T.\) V.B. Lidski\vı, in 1959, proved his famous theorem on the co...
Saved in:
Published in: | arXiv.org 2011-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg Latif, Qaisar |
description | In 1955, A. Grothendieck has shown that if the linear operator \(T\) in a Banach subspace of an \(L_\infty\)-space is 2/3-nuclear then the trace of \(T\) is well defined and is equal to the sum of all eigenvalues \(\{\mu_k(T)\}\) of \(T.\) V.B. Lidski\vı, in 1959, proved his famous theorem on the coincidence of the trace of the \(S_1\)-operator in \(L_2(\nu)\) with its spectral trace \(\sum_{k=1}^\infty \mu_k(T).\) We show that for \(p\in[1,\infty]\) and \(s\in (0,1]\) with \(1/s=1+|1/2-1/p|,\) and for every \(s\)-nuclear operator \(T\) in every subspace of any \(L_p(\nu)\)-space the trace of \(T\) is well defined and equals the sum of all eigenvalues of \(T.\) |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086795663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086795663</sourcerecordid><originalsourceid>FETCH-proquest_journals_20867956633</originalsourceid><addsrcrecordid>eNqNyt0KwiAcBXAJgkbtHYSuBdN06zr6IHbZ_XCbkltN86_v32I9QFeH8ztngTLG-Y6Ue8ZWKAfoKaVMFkwInqHbJbj40GNndTuQynYwWIsncUG_sHEBQ2rAq1YDVmOHjWrjF2dxBle1J3PboKVRT9D5L9doez7dj1fig3snDbHuXQrjNNWMlrI4CCk5_-_1AdmkPNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086795663</pqid></control><display><type>article</type><title>Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg ; Latif, Qaisar</creator><creatorcontrib>Reinov, Oleg ; Latif, Qaisar</creatorcontrib><description>In 1955, A. Grothendieck has shown that if the linear operator \(T\) in a Banach subspace of an \(L_\infty\)-space is 2/3-nuclear then the trace of \(T\) is well defined and is equal to the sum of all eigenvalues \(\{\mu_k(T)\}\) of \(T.\) V.B. Lidski\vı, in 1959, proved his famous theorem on the coincidence of the trace of the \(S_1\)-operator in \(L_2(\nu)\) with its spectral trace \(\sum_{k=1}^\infty \mu_k(T).\) We show that for \(p\in[1,\infty]\) and \(s\in (0,1]\) with \(1/s=1+|1/2-1/p|,\) and for every \(s\)-nuclear operator \(T\) in every subspace of any \(L_p(\nu)\)-space the trace of \(T\) is well defined and equals the sum of all eigenvalues of \(T.\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Eigenvalues ; Linear operators ; Subspaces ; Theorems</subject><ispartof>arXiv.org, 2011-05</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086795663?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><title>Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces</title><title>arXiv.org</title><description>In 1955, A. Grothendieck has shown that if the linear operator \(T\) in a Banach subspace of an \(L_\infty\)-space is 2/3-nuclear then the trace of \(T\) is well defined and is equal to the sum of all eigenvalues \(\{\mu_k(T)\}\) of \(T.\) V.B. Lidski\vı, in 1959, proved his famous theorem on the coincidence of the trace of the \(S_1\)-operator in \(L_2(\nu)\) with its spectral trace \(\sum_{k=1}^\infty \mu_k(T).\) We show that for \(p\in[1,\infty]\) and \(s\in (0,1]\) with \(1/s=1+|1/2-1/p|,\) and for every \(s\)-nuclear operator \(T\) in every subspace of any \(L_p(\nu)\)-space the trace of \(T\) is well defined and equals the sum of all eigenvalues of \(T.\)</description><subject>Eigenvalues</subject><subject>Linear operators</subject><subject>Subspaces</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyt0KwiAcBXAJgkbtHYSuBdN06zr6IHbZ_XCbkltN86_v32I9QFeH8ztngTLG-Y6Ue8ZWKAfoKaVMFkwInqHbJbj40GNndTuQynYwWIsncUG_sHEBQ2rAq1YDVmOHjWrjF2dxBle1J3PboKVRT9D5L9doez7dj1fig3snDbHuXQrjNNWMlrI4CCk5_-_1AdmkPNU</recordid><startdate>20110514</startdate><enddate>20110514</enddate><creator>Reinov, Oleg</creator><creator>Latif, Qaisar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110514</creationdate><title>Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces</title><author>Reinov, Oleg ; Latif, Qaisar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20867956633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Eigenvalues</topic><topic>Linear operators</topic><topic>Subspaces</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><au>Latif, Qaisar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces</atitle><jtitle>arXiv.org</jtitle><date>2011-05-14</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In 1955, A. Grothendieck has shown that if the linear operator \(T\) in a Banach subspace of an \(L_\infty\)-space is 2/3-nuclear then the trace of \(T\) is well defined and is equal to the sum of all eigenvalues \(\{\mu_k(T)\}\) of \(T.\) V.B. Lidski\vı, in 1959, proved his famous theorem on the coincidence of the trace of the \(S_1\)-operator in \(L_2(\nu)\) with its spectral trace \(\sum_{k=1}^\infty \mu_k(T).\) We show that for \(p\in[1,\infty]\) and \(s\in (0,1]\) with \(1/s=1+|1/2-1/p|,\) and for every \(s\)-nuclear operator \(T\) in every subspace of any \(L_p(\nu)\)-space the trace of \(T\) is well defined and equals the sum of all eigenvalues of \(T.\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086795663 |
source | Publicly Available Content Database |
subjects | Eigenvalues Linear operators Subspaces Theorems |
title | Grothendieck-Lidskii theorem for subspaces and factor spaces of L_p-spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Grothendieck-Lidskii%20theorem%20for%20subspaces%20and%20factor%20spaces%20of%20L_p-spaces&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg&rft.date=2011-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086795663%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20867956633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086795663&rft_id=info:pmid/&rfr_iscdi=true |