Loading…

The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement

Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove th...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-06
Main Authors: Nakashima, Norihiro, Okuyama, Go, Saito, Mutsumi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nakashima, Norihiro
Okuyama, Go
Saito, Mutsumi
description Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r > n,m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r > n,m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086814253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086814253</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868142533</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgWLR3-OBaaJNWuxW1dlME6b4E-6uRmNSfZuHtDcUDuJph3szMWMSFSDdFxvmCxc49kyTh2x3PcxExah4IJSEadA6k6aBWRr2knkK4orPaj8oaB7aH2nZe42SPqu-R0IwqdC8DkhwtTUTCObyRukH1CfmgpUHYE0lzx1cYrNi8l9ph_NMlW5en5lBtBrJvj25sn9aTCajlSbEt0oznQvzX-gIsLEsy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086814253</pqid></control><display><type>article</type><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><source>Publicly Available Content Database</source><creator>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</creator><creatorcontrib>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</creatorcontrib><description>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r &gt; n,m &gt; r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r &gt; n,m &lt; r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Hyperplanes ; Mathematical analysis ; Modules ; Operators (mathematics) ; Polynomials ; Rings (mathematics) ; Vector space</subject><ispartof>arXiv.org, 2011-06</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086814253?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Nakashima, Norihiro</creatorcontrib><creatorcontrib>Okuyama, Go</creatorcontrib><creatorcontrib>Saito, Mutsumi</creatorcontrib><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><title>arXiv.org</title><description>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r &gt; n,m &gt; r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r &gt; n,m &lt; r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</description><subject>Differential equations</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Vector space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAURIMgWLR3-OBaaJNWuxW1dlME6b4E-6uRmNSfZuHtDcUDuJph3szMWMSFSDdFxvmCxc49kyTh2x3PcxExah4IJSEadA6k6aBWRr2knkK4orPaj8oaB7aH2nZe42SPqu-R0IwqdC8DkhwtTUTCObyRukH1CfmgpUHYE0lzx1cYrNi8l9ph_NMlW5en5lBtBrJvj25sn9aTCajlSbEt0oznQvzX-gIsLEsy</recordid><startdate>20110609</startdate><enddate>20110609</enddate><creator>Nakashima, Norihiro</creator><creator>Okuyama, Go</creator><creator>Saito, Mutsumi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110609</creationdate><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><author>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868142533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Differential equations</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Vector space</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakashima, Norihiro</creatorcontrib><creatorcontrib>Okuyama, Go</creatorcontrib><creatorcontrib>Saito, Mutsumi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakashima, Norihiro</au><au>Okuyama, Go</au><au>Saito, Mutsumi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</atitle><jtitle>arXiv.org</jtitle><date>2011-06-09</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r &gt; n,m &gt; r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r &gt; n,m &lt; r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086814253
source Publicly Available Content Database
subjects Differential equations
Hyperplanes
Mathematical analysis
Modules
Operators (mathematics)
Polynomials
Rings (mathematics)
Vector space
title The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Freeness%20and%20Minimal%20Free%20Resolutions%20of%20Modules%20of%20Differential%20Operators%20of%20a%20Generic%20Hyperplane%20Arrangement&rft.jtitle=arXiv.org&rft.au=Nakashima,%20Norihiro&rft.date=2011-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086814253%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868142533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086814253&rft_id=info:pmid/&rfr_iscdi=true