Loading…
The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement
Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove th...
Saved in:
Published in: | arXiv.org 2011-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nakashima, Norihiro Okuyama, Go Saito, Mutsumi |
description | Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r > n,m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r > n,m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086814253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086814253</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868142533</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgWLR3-OBaaJNWuxW1dlME6b4E-6uRmNSfZuHtDcUDuJph3szMWMSFSDdFxvmCxc49kyTh2x3PcxExah4IJSEadA6k6aBWRr2knkK4orPaj8oaB7aH2nZe42SPqu-R0IwqdC8DkhwtTUTCObyRukH1CfmgpUHYE0lzx1cYrNi8l9ph_NMlW5en5lBtBrJvj25sn9aTCajlSbEt0oznQvzX-gIsLEsy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086814253</pqid></control><display><type>article</type><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><source>Publicly Available Content Database</source><creator>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</creator><creatorcontrib>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</creatorcontrib><description>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r > n,m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r > n,m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Hyperplanes ; Mathematical analysis ; Modules ; Operators (mathematics) ; Polynomials ; Rings (mathematics) ; Vector space</subject><ispartof>arXiv.org, 2011-06</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086814253?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Nakashima, Norihiro</creatorcontrib><creatorcontrib>Okuyama, Go</creatorcontrib><creatorcontrib>Saito, Mutsumi</creatorcontrib><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><title>arXiv.org</title><description>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r > n,m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r > n,m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</description><subject>Differential equations</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Vector space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAURIMgWLR3-OBaaJNWuxW1dlME6b4E-6uRmNSfZuHtDcUDuJph3szMWMSFSDdFxvmCxc49kyTh2x3PcxExah4IJSEadA6k6aBWRr2knkK4orPaj8oaB7aH2nZe42SPqu-R0IwqdC8DkhwtTUTCObyRukH1CfmgpUHYE0lzx1cYrNi8l9ph_NMlW5en5lBtBrJvj25sn9aTCajlSbEt0oznQvzX-gIsLEsy</recordid><startdate>20110609</startdate><enddate>20110609</enddate><creator>Nakashima, Norihiro</creator><creator>Okuyama, Go</creator><creator>Saito, Mutsumi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110609</creationdate><title>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</title><author>Nakashima, Norihiro ; Okuyama, Go ; Saito, Mutsumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868142533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Differential equations</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Vector space</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakashima, Norihiro</creatorcontrib><creatorcontrib>Okuyama, Go</creatorcontrib><creatorcontrib>Saito, Mutsumi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakashima, Norihiro</au><au>Okuyama, Go</au><au>Saito, Mutsumi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement</atitle><jtitle>arXiv.org</jtitle><date>2011-06-09</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Let A be a generic hyperplane arrangement composed of r hyperplanes in an n-dimensional vector space, and S the polynomial ring in n variables. We consider the S-submodule D(m)(A) of the nth Weyl algebra of homogeneous differential operators of order m preserving the defining ideal of A. We prove that if n \geq 3, r > n,m > r - n + 1, then D(m)(A) is free (Holm's conjecture). Combining this with some results by Holm, we see that D(m)(A) is free unless n \geq 3, r > n,m < r - n + 1. In the remaining case, we construct a minimal free resolution of D(m)(A) by generalizing Yuzvinsky's construction for m = 1. In addition, we construct a minimal free resolution of the transpose of the m-jet module, which generalizes a result by Rose and Terao for m = 1.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086814253 |
source | Publicly Available Content Database |
subjects | Differential equations Hyperplanes Mathematical analysis Modules Operators (mathematics) Polynomials Rings (mathematics) Vector space |
title | The Freeness and Minimal Free Resolutions of Modules of Differential Operators of a Generic Hyperplane Arrangement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Freeness%20and%20Minimal%20Free%20Resolutions%20of%20Modules%20of%20Differential%20Operators%20of%20a%20Generic%20Hyperplane%20Arrangement&rft.jtitle=arXiv.org&rft.au=Nakashima,%20Norihiro&rft.date=2011-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086814253%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868142533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086814253&rft_id=info:pmid/&rfr_iscdi=true |