Loading…
Aging behavior of an Al–Cu–Mg alloy
Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, calle...
Saved in:
Published in: | Journal of alloys and compounds 2018-08, Vol.759, p.108-119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163 |
container_end_page | 119 |
container_issue | |
container_start_page | 108 |
container_title | Journal of alloys and compounds |
container_volume | 759 |
creator | Zuiko, Ivan Kaibyshev, Rustam |
description | Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) > 100 precipitate during artificial aging.
[Display omitted]
•Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility. |
doi_str_mv | 10.1016/j.jallcom.2018.05.053 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2086828630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818317328</els_id><sourcerecordid>2086828630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPIAy4cDXjzWQySVZSin9QcaPrkCZ3aobppGbaQne-g2_ok5jS7oXDvZtzzuV-hFxTKCjQ-q4tWtN1NiyLEqgsgCexEzKiUrC8qmt1SkagSp5LJuU5uRiGFgCoYnREbicL3y-yOX6arQ8xC01m-mzS_X7_TDdpvC6y1B12l-SsMd2AV8c9Jh-PD-_T53z29vQyncxyy5hY58o2TQUo5sowJZgrJTjrAIzijbACuMBqLgBLZRCROlUJXhnHuLGuqmnNxuTm0LuK4WuDw1q3YRP7dFKXIGtZyppBcvGDy8YwDBEbvYp-aeJOU9B7JrrVRyZ6z0QDT2Ipd3_IYXph6zHqwXrsLTof0a61C_6fhj9NlWzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086828630</pqid></control><display><type>article</type><title>Aging behavior of an Al–Cu–Mg alloy</title><source>ScienceDirect Freedom Collection</source><creator>Zuiko, Ivan ; Kaibyshev, Rustam</creator><creatorcontrib>Zuiko, Ivan ; Kaibyshev, Rustam</creatorcontrib><description>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) > 100 precipitate during artificial aging.
[Display omitted]
•Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.05.053</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Age-hardening ; Aging (artificial) ; Aging (metallurgy) ; Aging (natural) ; Aluminum alloy ; Aluminum alloys ; Aluminum base alloys ; Copper ; Copper base alloys ; Density ; Hardening ; High aspect ratio ; Mechanical properties ; Microstructure ; Overaging ; Phase plates ; Phase transformations ; Phase transitions ; Precipitates ; Precipitations ; Transmission electron microscopy</subject><ispartof>Journal of alloys and compounds, 2018-08, Vol.759, p.108-119</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</citedby><cites>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</cites><orcidid>0000-0003-2752-0877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zuiko, Ivan</creatorcontrib><creatorcontrib>Kaibyshev, Rustam</creatorcontrib><title>Aging behavior of an Al–Cu–Mg alloy</title><title>Journal of alloys and compounds</title><description>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) > 100 precipitate during artificial aging.
[Display omitted]
•Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</description><subject>Age-hardening</subject><subject>Aging (artificial)</subject><subject>Aging (metallurgy)</subject><subject>Aging (natural)</subject><subject>Aluminum alloy</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Density</subject><subject>Hardening</subject><subject>High aspect ratio</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Overaging</subject><subject>Phase plates</subject><subject>Phase transformations</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitations</subject><subject>Transmission electron microscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPIAy4cDXjzWQySVZSin9QcaPrkCZ3aobppGbaQne-g2_ok5jS7oXDvZtzzuV-hFxTKCjQ-q4tWtN1NiyLEqgsgCexEzKiUrC8qmt1SkagSp5LJuU5uRiGFgCoYnREbicL3y-yOX6arQ8xC01m-mzS_X7_TDdpvC6y1B12l-SsMd2AV8c9Jh-PD-_T53z29vQyncxyy5hY58o2TQUo5sowJZgrJTjrAIzijbACuMBqLgBLZRCROlUJXhnHuLGuqmnNxuTm0LuK4WuDw1q3YRP7dFKXIGtZyppBcvGDy8YwDBEbvYp-aeJOU9B7JrrVRyZ6z0QDT2Ipd3_IYXph6zHqwXrsLTof0a61C_6fhj9NlWzW</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Zuiko, Ivan</creator><creator>Kaibyshev, Rustam</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2752-0877</orcidid></search><sort><creationdate>20180830</creationdate><title>Aging behavior of an Al–Cu–Mg alloy</title><author>Zuiko, Ivan ; Kaibyshev, Rustam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age-hardening</topic><topic>Aging (artificial)</topic><topic>Aging (metallurgy)</topic><topic>Aging (natural)</topic><topic>Aluminum alloy</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Density</topic><topic>Hardening</topic><topic>High aspect ratio</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Overaging</topic><topic>Phase plates</topic><topic>Phase transformations</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitations</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuiko, Ivan</creatorcontrib><creatorcontrib>Kaibyshev, Rustam</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuiko, Ivan</au><au>Kaibyshev, Rustam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging behavior of an Al–Cu–Mg alloy</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-08-30</date><risdate>2018</risdate><volume>759</volume><spage>108</spage><epage>119</epage><pages>108-119</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) > 100 precipitate during artificial aging.
[Display omitted]
•Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.05.053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2752-0877</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-08, Vol.759, p.108-119 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2086828630 |
source | ScienceDirect Freedom Collection |
subjects | Age-hardening Aging (artificial) Aging (metallurgy) Aging (natural) Aluminum alloy Aluminum alloys Aluminum base alloys Copper Copper base alloys Density Hardening High aspect ratio Mechanical properties Microstructure Overaging Phase plates Phase transformations Phase transitions Precipitates Precipitations Transmission electron microscopy |
title | Aging behavior of an Al–Cu–Mg alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20behavior%20of%20an%20Al%E2%80%93Cu%E2%80%93Mg%20alloy&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zuiko,%20Ivan&rft.date=2018-08-30&rft.volume=759&rft.spage=108&rft.epage=119&rft.pages=108-119&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.05.053&rft_dat=%3Cproquest_cross%3E2086828630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086828630&rft_id=info:pmid/&rfr_iscdi=true |