Loading…

Aging behavior of an Al–Cu–Mg alloy

Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, calle...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2018-08, Vol.759, p.108-119
Main Authors: Zuiko, Ivan, Kaibyshev, Rustam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163
cites cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163
container_end_page 119
container_issue
container_start_page 108
container_title Journal of alloys and compounds
container_volume 759
creator Zuiko, Ivan
Kaibyshev, Rustam
description Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) > 100 precipitate during artificial aging. [Display omitted] •Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.
doi_str_mv 10.1016/j.jallcom.2018.05.053
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2086828630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818317328</els_id><sourcerecordid>2086828630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuPIAy4cDXjzWQySVZSin9QcaPrkCZ3aobppGbaQne-g2_ok5jS7oXDvZtzzuV-hFxTKCjQ-q4tWtN1NiyLEqgsgCexEzKiUrC8qmt1SkagSp5LJuU5uRiGFgCoYnREbicL3y-yOX6arQ8xC01m-mzS_X7_TDdpvC6y1B12l-SsMd2AV8c9Jh-PD-_T53z29vQyncxyy5hY58o2TQUo5sowJZgrJTjrAIzijbACuMBqLgBLZRCROlUJXhnHuLGuqmnNxuTm0LuK4WuDw1q3YRP7dFKXIGtZyppBcvGDy8YwDBEbvYp-aeJOU9B7JrrVRyZ6z0QDT2Ipd3_IYXph6zHqwXrsLTof0a61C_6fhj9NlWzW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086828630</pqid></control><display><type>article</type><title>Aging behavior of an Al–Cu–Mg alloy</title><source>ScienceDirect Freedom Collection</source><creator>Zuiko, Ivan ; Kaibyshev, Rustam</creator><creatorcontrib>Zuiko, Ivan ; Kaibyshev, Rustam</creatorcontrib><description>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) &gt; 100 precipitate during artificial aging. [Display omitted] •Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.05.053</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Age-hardening ; Aging (artificial) ; Aging (metallurgy) ; Aging (natural) ; Aluminum alloy ; Aluminum alloys ; Aluminum base alloys ; Copper ; Copper base alloys ; Density ; Hardening ; High aspect ratio ; Mechanical properties ; Microstructure ; Overaging ; Phase plates ; Phase transformations ; Phase transitions ; Precipitates ; Precipitations ; Transmission electron microscopy</subject><ispartof>Journal of alloys and compounds, 2018-08, Vol.759, p.108-119</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</citedby><cites>FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</cites><orcidid>0000-0003-2752-0877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zuiko, Ivan</creatorcontrib><creatorcontrib>Kaibyshev, Rustam</creatorcontrib><title>Aging behavior of an Al–Cu–Mg alloy</title><title>Journal of alloys and compounds</title><description>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) &gt; 100 precipitate during artificial aging. [Display omitted] •Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</description><subject>Age-hardening</subject><subject>Aging (artificial)</subject><subject>Aging (metallurgy)</subject><subject>Aging (natural)</subject><subject>Aluminum alloy</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Density</subject><subject>Hardening</subject><subject>High aspect ratio</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Overaging</subject><subject>Phase plates</subject><subject>Phase transformations</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitations</subject><subject>Transmission electron microscopy</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuPIAy4cDXjzWQySVZSin9QcaPrkCZ3aobppGbaQne-g2_ok5jS7oXDvZtzzuV-hFxTKCjQ-q4tWtN1NiyLEqgsgCexEzKiUrC8qmt1SkagSp5LJuU5uRiGFgCoYnREbicL3y-yOX6arQ8xC01m-mzS_X7_TDdpvC6y1B12l-SsMd2AV8c9Jh-PD-_T53z29vQyncxyy5hY58o2TQUo5sowJZgrJTjrAIzijbACuMBqLgBLZRCROlUJXhnHuLGuqmnNxuTm0LuK4WuDw1q3YRP7dFKXIGtZyppBcvGDy8YwDBEbvYp-aeJOU9B7JrrVRyZ6z0QDT2Ipd3_IYXph6zHqwXrsLTof0a61C_6fhj9NlWzW</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Zuiko, Ivan</creator><creator>Kaibyshev, Rustam</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2752-0877</orcidid></search><sort><creationdate>20180830</creationdate><title>Aging behavior of an Al–Cu–Mg alloy</title><author>Zuiko, Ivan ; Kaibyshev, Rustam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age-hardening</topic><topic>Aging (artificial)</topic><topic>Aging (metallurgy)</topic><topic>Aging (natural)</topic><topic>Aluminum alloy</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Density</topic><topic>Hardening</topic><topic>High aspect ratio</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Overaging</topic><topic>Phase plates</topic><topic>Phase transformations</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitations</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuiko, Ivan</creatorcontrib><creatorcontrib>Kaibyshev, Rustam</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuiko, Ivan</au><au>Kaibyshev, Rustam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aging behavior of an Al–Cu–Mg alloy</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-08-30</date><risdate>2018</risdate><volume>759</volume><spage>108</spage><epage>119</epage><pages>108-119</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Effect of aging temperature on precipitation behavior and mechanical properties of an AA2519 alloy was examined. Long-term natural aging provides the best combination of strength and ductility by the precipitation of dense Guinier–Preston and Guinier–Preston–Bagaryatsky zones. This phenomenon, called “delayed hardening”, has the same origin as the “rapid hardening” in AA2X24 alloys subjected to artificial aging. At 190 °C, high density of θ″-phase provides high strength. Peak aging is characterized by insignificant increase in strength associated with additional precipitation of θ′-phase. The overaging leads to the formation of precipitate structure dominated by θ′-phase. The formation of θ″- and θ′-phases can consume ∼0.7 and ∼3.3%Cu, respectively. Despite this, the number density of θ″-phase precipitates is higher than that of θ′-phase ones by a factor of ∼40. The θ″-phase is effective strengthening agent in the AA2519 alloy. The Ω-phase plates with a very high aspect ratio (AR) &gt; 100 precipitate during artificial aging. [Display omitted] •Natural aging of an AA2519 alloy leads to precipitations of GP and GPB zones.•Artificial aging produces θ″/θ′- and Ω-phase plates.•0.7 and 3.3 wt%Cu are consumed for the formation of θ″ and θ′-phases.•Natural aging provides the best combination of strength and ductility.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.05.053</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2752-0877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2018-08, Vol.759, p.108-119
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2086828630
source ScienceDirect Freedom Collection
subjects Age-hardening
Aging (artificial)
Aging (metallurgy)
Aging (natural)
Aluminum alloy
Aluminum alloys
Aluminum base alloys
Copper
Copper base alloys
Density
Hardening
High aspect ratio
Mechanical properties
Microstructure
Overaging
Phase plates
Phase transformations
Phase transitions
Precipitates
Precipitations
Transmission electron microscopy
title Aging behavior of an Al–Cu–Mg alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aging%20behavior%20of%20an%20Al%E2%80%93Cu%E2%80%93Mg%20alloy&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zuiko,%20Ivan&rft.date=2018-08-30&rft.volume=759&rft.spage=108&rft.epage=119&rft.pages=108-119&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.05.053&rft_dat=%3Cproquest_cross%3E2086828630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-9cff40e7b9a3973d280dcd00a95f7c7057e4b70e29aeee1d94754ad35acd46163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086828630&rft_id=info:pmid/&rfr_iscdi=true