Loading…
Graphs and the (co)homology of Lie algebras
In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with...
Saved in:
Published in: | arXiv.org 2011-07 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zheng, Qibing |
description | In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086842842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086842842</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868428423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi9KLMgoVkjMS1EoyUhV0EjO18zIz83PyU-vVMhPU_DJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszoIVAZEycKgDnTjBi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086842842</pqid></control><display><type>article</type><title>Graphs and the (co)homology of Lie algebras</title><source>Publicly Available Content Database</source><creator>Zheng, Qibing</creator><creatorcontrib>Zheng, Qibing</creatorcontrib><description>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Complex numbers ; Diamonds ; Fields (mathematics) ; Graph theory ; Homology ; Lie groups ; Quantum theory ; Weight</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086842842?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Zheng, Qibing</creatorcontrib><title>Graphs and the (co)homology of Lie algebras</title><title>arXiv.org</title><description>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</description><subject>Algebra</subject><subject>Complex numbers</subject><subject>Diamonds</subject><subject>Fields (mathematics)</subject><subject>Graph theory</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Quantum theory</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi9KLMgoVkjMS1EoyUhV0EjO18zIz83PyU-vVMhPU_DJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszoIVAZEycKgDnTjBi</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Zheng, Qibing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110701</creationdate><title>Graphs and the (co)homology of Lie algebras</title><author>Zheng, Qibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868428423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Complex numbers</topic><topic>Diamonds</topic><topic>Fields (mathematics)</topic><topic>Graph theory</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Quantum theory</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qibing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qibing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Graphs and the (co)homology of Lie algebras</atitle><jtitle>arXiv.org</jtitle><date>2011-07-01</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086842842 |
source | Publicly Available Content Database |
subjects | Algebra Complex numbers Diamonds Fields (mathematics) Graph theory Homology Lie groups Quantum theory Weight |
title | Graphs and the (co)homology of Lie algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Graphs%20and%20the%20(co)homology%20of%20Lie%20algebras&rft.jtitle=arXiv.org&rft.au=Zheng,%20Qibing&rft.date=2011-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086842842%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868428423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086842842&rft_id=info:pmid/&rfr_iscdi=true |