Loading…

Graphs and the (co)homology of Lie algebras

In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-07
Main Author: Zheng, Qibing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zheng, Qibing
description In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086842842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086842842</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868428423</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi9KLMgoVkjMS1EoyUhV0EjO18zIz83PyU-vVMhPU_DJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszoIVAZEycKgDnTjBi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086842842</pqid></control><display><type>article</type><title>Graphs and the (co)homology of Lie algebras</title><source>Publicly Available Content Database</source><creator>Zheng, Qibing</creator><creatorcontrib>Zheng, Qibing</creatorcontrib><description>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Complex numbers ; Diamonds ; Fields (mathematics) ; Graph theory ; Homology ; Lie groups ; Quantum theory ; Weight</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086842842?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Zheng, Qibing</creatorcontrib><title>Graphs and the (co)homology of Lie algebras</title><title>arXiv.org</title><description>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</description><subject>Algebra</subject><subject>Complex numbers</subject><subject>Diamonds</subject><subject>Fields (mathematics)</subject><subject>Graph theory</subject><subject>Homology</subject><subject>Lie groups</subject><subject>Quantum theory</subject><subject>Weight</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdi9KLMgoVkjMS1EoyUhV0EjO18zIz83PyU-vVMhPU_DJTFVIzElPTSpKLOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwszoIVAZEycKgDnTjBi</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Zheng, Qibing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110701</creationdate><title>Graphs and the (co)homology of Lie algebras</title><author>Zheng, Qibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868428423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Complex numbers</topic><topic>Diamonds</topic><topic>Fields (mathematics)</topic><topic>Graph theory</topic><topic>Homology</topic><topic>Lie groups</topic><topic>Quantum theory</topic><topic>Weight</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qibing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qibing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Graphs and the (co)homology of Lie algebras</atitle><jtitle>arXiv.org</jtitle><date>2011-07-01</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>In this paper, we develop a diamond graph theory and apply the theory to the (co)homology of the Lie algebra generated by positive systems of the classical semi-simple Lie algebras over the field of complex numbers. As an application, we give the weight decomposition of the diamond Lie algebra with Dynkin graph \(A_{n+1}\) and compute the rank of every weight subgraph of it.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086842842
source Publicly Available Content Database
subjects Algebra
Complex numbers
Diamonds
Fields (mathematics)
Graph theory
Homology
Lie groups
Quantum theory
Weight
title Graphs and the (co)homology of Lie algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Graphs%20and%20the%20(co)homology%20of%20Lie%20algebras&rft.jtitle=arXiv.org&rft.au=Zheng,%20Qibing&rft.date=2011-07-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086842842%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868428423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086842842&rft_id=info:pmid/&rfr_iscdi=true