Loading…
On an Efficient Marie Curie Initial Training Network
Collaboration in science is one of the key components of world-class research. The European Commission supports collaboration between institutions and funds young researchers appointed by these partner institutions. In these networks, the mobility of the researchers is enforced in order to enhance t...
Saved in:
Published in: | arXiv.org 2011-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dinler, Ali Cengis Hasan Orucoglu, Kamil Barber, Robert W |
description | Collaboration in science is one of the key components of world-class research. The European Commission supports collaboration between institutions and funds young researchers appointed by these partner institutions. In these networks, the mobility of the researchers is enforced in order to enhance the collaboration. In this study, based on a real Marie Curie Initial Training Network, an algorithm to construct a collaboration network is investigated. The algorithm suggests that a strongly efficient expansion leads to a star-like network. The results might help the design of efficient collaboration networks for future Initial Training Network proposals. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086853417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086853417</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868534173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c9TSMxTcE1Ly0zOTM0rUfBNLMpMVXAuBZGeeZklmYk5CiFFiZl5mXnpCn6pJeX5Rdk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBhZmFqbGJobkycKgDwITPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086853417</pqid></control><display><type>article</type><title>On an Efficient Marie Curie Initial Training Network</title><source>Publicly Available Content (ProQuest)</source><creator>Dinler, Ali ; Cengis Hasan ; Orucoglu, Kamil ; Barber, Robert W</creator><creatorcontrib>Dinler, Ali ; Cengis Hasan ; Orucoglu, Kamil ; Barber, Robert W</creatorcontrib><description>Collaboration in science is one of the key components of world-class research. The European Commission supports collaboration between institutions and funds young researchers appointed by these partner institutions. In these networks, the mobility of the researchers is enforced in order to enhance the collaboration. In this study, based on a real Marie Curie Initial Training Network, an algorithm to construct a collaboration network is investigated. The algorithm suggests that a strongly efficient expansion leads to a star-like network. The results might help the design of efficient collaboration networks for future Initial Training Network proposals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Collaboration ; Curie, Marie (1867-1934) ; Researchers ; Training</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086853417?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Dinler, Ali</creatorcontrib><creatorcontrib>Cengis Hasan</creatorcontrib><creatorcontrib>Orucoglu, Kamil</creatorcontrib><creatorcontrib>Barber, Robert W</creatorcontrib><title>On an Efficient Marie Curie Initial Training Network</title><title>arXiv.org</title><description>Collaboration in science is one of the key components of world-class research. The European Commission supports collaboration between institutions and funds young researchers appointed by these partner institutions. In these networks, the mobility of the researchers is enforced in order to enhance the collaboration. In this study, based on a real Marie Curie Initial Training Network, an algorithm to construct a collaboration network is investigated. The algorithm suggests that a strongly efficient expansion leads to a star-like network. The results might help the design of efficient collaboration networks for future Initial Training Network proposals.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Curie, Marie (1867-1934)</subject><subject>Researchers</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8c9TSMxTcE1Ly0zOTM0rUfBNLMpMVXAuBZGeeZklmYk5CiFFiZl5mXnpCn6pJeX5Rdk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGBhZmFqbGJobkycKgDwITPg</recordid><startdate>20110711</startdate><enddate>20110711</enddate><creator>Dinler, Ali</creator><creator>Cengis Hasan</creator><creator>Orucoglu, Kamil</creator><creator>Barber, Robert W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110711</creationdate><title>On an Efficient Marie Curie Initial Training Network</title><author>Dinler, Ali ; Cengis Hasan ; Orucoglu, Kamil ; Barber, Robert W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868534173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Curie, Marie (1867-1934)</topic><topic>Researchers</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinler, Ali</creatorcontrib><creatorcontrib>Cengis Hasan</creatorcontrib><creatorcontrib>Orucoglu, Kamil</creatorcontrib><creatorcontrib>Barber, Robert W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinler, Ali</au><au>Cengis Hasan</au><au>Orucoglu, Kamil</au><au>Barber, Robert W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On an Efficient Marie Curie Initial Training Network</atitle><jtitle>arXiv.org</jtitle><date>2011-07-11</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Collaboration in science is one of the key components of world-class research. The European Commission supports collaboration between institutions and funds young researchers appointed by these partner institutions. In these networks, the mobility of the researchers is enforced in order to enhance the collaboration. In this study, based on a real Marie Curie Initial Training Network, an algorithm to construct a collaboration network is investigated. The algorithm suggests that a strongly efficient expansion leads to a star-like network. The results might help the design of efficient collaboration networks for future Initial Training Network proposals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086853417 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Collaboration Curie, Marie (1867-1934) Researchers Training |
title | On an Efficient Marie Curie Initial Training Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20an%20Efficient%20Marie%20Curie%20Initial%20Training%20Network&rft.jtitle=arXiv.org&rft.au=Dinler,%20Ali&rft.date=2011-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086853417%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868534173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086853417&rft_id=info:pmid/&rfr_iscdi=true |