Loading…

Triangulating tunneling resonances in a point contact

We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to uninte...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-07
Main Authors: Bishop, Nathaniel C, Young, Ralph W, Ten Eyck, Gregory A, Wend, Joel R, Bielejec, Edward S, Eng, Kevin, Tracy, Lisa A, Lilly, Michael P, Carroll, Malcolm S, Carlos Borrás Pinilla, Stalford, Harold L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bishop, Nathaniel C
Young, Ralph W
Ten Eyck, Gregory A
Wend, Joel R
Bielejec, Edward S
Eng, Kevin
Tracy, Lisa A
Lilly, Michael P
Carroll, Malcolm S
Carlos Borrás Pinilla
Stalford, Harold L
description We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086853502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086853502</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868535023</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxI2puYviA3ovS4klJWxqdvN_FXyApxmY2agGrD11_gywUy3zYoyB_gLO2Ua5oUSkuSaUSLOWShTS10rgTEhTYB1Jo15zJNFTJsFJDmr7xMSh_XGvjvfbcH10a8mvGljGJddCnzSC8b131hmw_11v1zE1dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086853502</pqid></control><display><type>article</type><title>Triangulating tunneling resonances in a point contact</title><source>Publicly Available Content Database</source><creator>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</creator><creatorcontrib>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</creatorcontrib><description>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antimony ; Capacitance ; Electron gas ; MOS devices ; Point contact ; Position (location) ; Quantum dots ; Resonant tunneling ; Self alignment ; Silicon ; Triangulation</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086853502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bishop, Nathaniel C</creatorcontrib><creatorcontrib>Young, Ralph W</creatorcontrib><creatorcontrib>Ten Eyck, Gregory A</creatorcontrib><creatorcontrib>Wend, Joel R</creatorcontrib><creatorcontrib>Bielejec, Edward S</creatorcontrib><creatorcontrib>Eng, Kevin</creatorcontrib><creatorcontrib>Tracy, Lisa A</creatorcontrib><creatorcontrib>Lilly, Michael P</creatorcontrib><creatorcontrib>Carroll, Malcolm S</creatorcontrib><creatorcontrib>Carlos Borrás Pinilla</creatorcontrib><creatorcontrib>Stalford, Harold L</creatorcontrib><title>Triangulating tunneling resonances in a point contact</title><title>arXiv.org</title><description>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</description><subject>Antimony</subject><subject>Capacitance</subject><subject>Electron gas</subject><subject>MOS devices</subject><subject>Point contact</subject><subject>Position (location)</subject><subject>Quantum dots</subject><subject>Resonant tunneling</subject><subject>Self alignment</subject><subject>Silicon</subject><subject>Triangulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxI2puYviA3ovS4klJWxqdvN_FXyApxmY2agGrD11_gywUy3zYoyB_gLO2Ua5oUSkuSaUSLOWShTS10rgTEhTYB1Jo15zJNFTJsFJDmr7xMSh_XGvjvfbcH10a8mvGljGJddCnzSC8b131hmw_11v1zE1dA</recordid><startdate>20110726</startdate><enddate>20110726</enddate><creator>Bishop, Nathaniel C</creator><creator>Young, Ralph W</creator><creator>Ten Eyck, Gregory A</creator><creator>Wend, Joel R</creator><creator>Bielejec, Edward S</creator><creator>Eng, Kevin</creator><creator>Tracy, Lisa A</creator><creator>Lilly, Michael P</creator><creator>Carroll, Malcolm S</creator><creator>Carlos Borrás Pinilla</creator><creator>Stalford, Harold L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110726</creationdate><title>Triangulating tunneling resonances in a point contact</title><author>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868535023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antimony</topic><topic>Capacitance</topic><topic>Electron gas</topic><topic>MOS devices</topic><topic>Point contact</topic><topic>Position (location)</topic><topic>Quantum dots</topic><topic>Resonant tunneling</topic><topic>Self alignment</topic><topic>Silicon</topic><topic>Triangulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bishop, Nathaniel C</creatorcontrib><creatorcontrib>Young, Ralph W</creatorcontrib><creatorcontrib>Ten Eyck, Gregory A</creatorcontrib><creatorcontrib>Wend, Joel R</creatorcontrib><creatorcontrib>Bielejec, Edward S</creatorcontrib><creatorcontrib>Eng, Kevin</creatorcontrib><creatorcontrib>Tracy, Lisa A</creatorcontrib><creatorcontrib>Lilly, Michael P</creatorcontrib><creatorcontrib>Carroll, Malcolm S</creatorcontrib><creatorcontrib>Carlos Borrás Pinilla</creatorcontrib><creatorcontrib>Stalford, Harold L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishop, Nathaniel C</au><au>Young, Ralph W</au><au>Ten Eyck, Gregory A</au><au>Wend, Joel R</au><au>Bielejec, Edward S</au><au>Eng, Kevin</au><au>Tracy, Lisa A</au><au>Lilly, Michael P</au><au>Carroll, Malcolm S</au><au>Carlos Borrás Pinilla</au><au>Stalford, Harold L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Triangulating tunneling resonances in a point contact</atitle><jtitle>arXiv.org</jtitle><date>2011-07-26</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086853502
source Publicly Available Content Database
subjects Antimony
Capacitance
Electron gas
MOS devices
Point contact
Position (location)
Quantum dots
Resonant tunneling
Self alignment
Silicon
Triangulation
title Triangulating tunneling resonances in a point contact
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Triangulating%20tunneling%20resonances%20in%20a%20point%20contact&rft.jtitle=arXiv.org&rft.au=Bishop,%20Nathaniel%20C&rft.date=2011-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086853502%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868535023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086853502&rft_id=info:pmid/&rfr_iscdi=true