Loading…
Triangulating tunneling resonances in a point contact
We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to uninte...
Saved in:
Published in: | arXiv.org 2011-07 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bishop, Nathaniel C Young, Ralph W Ten Eyck, Gregory A Wend, Joel R Bielejec, Edward S Eng, Kevin Tracy, Lisa A Lilly, Michael P Carroll, Malcolm S Carlos Borrás Pinilla Stalford, Harold L |
description | We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086853502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086853502</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868535023</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxI2puYviA3ovS4klJWxqdvN_FXyApxmY2agGrD11_gywUy3zYoyB_gLO2Ua5oUSkuSaUSLOWShTS10rgTEhTYB1Jo15zJNFTJsFJDmr7xMSh_XGvjvfbcH10a8mvGljGJddCnzSC8b131hmw_11v1zE1dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086853502</pqid></control><display><type>article</type><title>Triangulating tunneling resonances in a point contact</title><source>Publicly Available Content Database</source><creator>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</creator><creatorcontrib>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</creatorcontrib><description>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Antimony ; Capacitance ; Electron gas ; MOS devices ; Point contact ; Position (location) ; Quantum dots ; Resonant tunneling ; Self alignment ; Silicon ; Triangulation</subject><ispartof>arXiv.org, 2011-07</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086853502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bishop, Nathaniel C</creatorcontrib><creatorcontrib>Young, Ralph W</creatorcontrib><creatorcontrib>Ten Eyck, Gregory A</creatorcontrib><creatorcontrib>Wend, Joel R</creatorcontrib><creatorcontrib>Bielejec, Edward S</creatorcontrib><creatorcontrib>Eng, Kevin</creatorcontrib><creatorcontrib>Tracy, Lisa A</creatorcontrib><creatorcontrib>Lilly, Michael P</creatorcontrib><creatorcontrib>Carroll, Malcolm S</creatorcontrib><creatorcontrib>Carlos Borrás Pinilla</creatorcontrib><creatorcontrib>Stalford, Harold L</creatorcontrib><title>Triangulating tunneling resonances in a point contact</title><title>arXiv.org</title><description>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</description><subject>Antimony</subject><subject>Capacitance</subject><subject>Electron gas</subject><subject>MOS devices</subject><subject>Point contact</subject><subject>Position (location)</subject><subject>Quantum dots</subject><subject>Resonant tunneling</subject><subject>Self alignment</subject><subject>Silicon</subject><subject>Triangulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxI2puYviA3ovS4klJWxqdvN_FXyApxmY2agGrD11_gywUy3zYoyB_gLO2Ua5oUSkuSaUSLOWShTS10rgTEhTYB1Jo15zJNFTJsFJDmr7xMSh_XGvjvfbcH10a8mvGljGJddCnzSC8b131hmw_11v1zE1dA</recordid><startdate>20110726</startdate><enddate>20110726</enddate><creator>Bishop, Nathaniel C</creator><creator>Young, Ralph W</creator><creator>Ten Eyck, Gregory A</creator><creator>Wend, Joel R</creator><creator>Bielejec, Edward S</creator><creator>Eng, Kevin</creator><creator>Tracy, Lisa A</creator><creator>Lilly, Michael P</creator><creator>Carroll, Malcolm S</creator><creator>Carlos Borrás Pinilla</creator><creator>Stalford, Harold L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110726</creationdate><title>Triangulating tunneling resonances in a point contact</title><author>Bishop, Nathaniel C ; Young, Ralph W ; Ten Eyck, Gregory A ; Wend, Joel R ; Bielejec, Edward S ; Eng, Kevin ; Tracy, Lisa A ; Lilly, Michael P ; Carroll, Malcolm S ; Carlos Borrás Pinilla ; Stalford, Harold L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868535023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Antimony</topic><topic>Capacitance</topic><topic>Electron gas</topic><topic>MOS devices</topic><topic>Point contact</topic><topic>Position (location)</topic><topic>Quantum dots</topic><topic>Resonant tunneling</topic><topic>Self alignment</topic><topic>Silicon</topic><topic>Triangulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Bishop, Nathaniel C</creatorcontrib><creatorcontrib>Young, Ralph W</creatorcontrib><creatorcontrib>Ten Eyck, Gregory A</creatorcontrib><creatorcontrib>Wend, Joel R</creatorcontrib><creatorcontrib>Bielejec, Edward S</creatorcontrib><creatorcontrib>Eng, Kevin</creatorcontrib><creatorcontrib>Tracy, Lisa A</creatorcontrib><creatorcontrib>Lilly, Michael P</creatorcontrib><creatorcontrib>Carroll, Malcolm S</creatorcontrib><creatorcontrib>Carlos Borrás Pinilla</creatorcontrib><creatorcontrib>Stalford, Harold L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bishop, Nathaniel C</au><au>Young, Ralph W</au><au>Ten Eyck, Gregory A</au><au>Wend, Joel R</au><au>Bielejec, Edward S</au><au>Eng, Kevin</au><au>Tracy, Lisa A</au><au>Lilly, Michael P</au><au>Carroll, Malcolm S</au><au>Carlos Borrás Pinilla</au><au>Stalford, Harold L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Triangulating tunneling resonances in a point contact</atitle><jtitle>arXiv.org</jtitle><date>2011-07-26</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>We observe resonant tunneling in silicon split gate point contacts implanted with antimony and defined in a self-aligned poly-silicon double gate enhancement mode Si-MOS device structure. We identify which resonances are likely candidates for transport through the antimony donor as opposed to unintentional disorder induced potentials using capacitance triangulation. We determine the capacitances from the resonant feature to each of the conducting gates and the source/drain two dimensional electron gas regions. In our device geometry, these capacitances provide information about the resonance location in three dimensions. Semi-classical electrostatic simulations of capacitance, already used to map quantum dot size and position, identify a combination of location and confinement potential size that satisfy our experimental observations. The sensitivity of simulation to position and size allow us to triangulate possible locations of the resonant level with nanometer resolution. We discuss our results and how they may apply to resonant tunneling through a single donor.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086853502 |
source | Publicly Available Content Database |
subjects | Antimony Capacitance Electron gas MOS devices Point contact Position (location) Quantum dots Resonant tunneling Self alignment Silicon Triangulation |
title | Triangulating tunneling resonances in a point contact |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Triangulating%20tunneling%20resonances%20in%20a%20point%20contact&rft.jtitle=arXiv.org&rft.au=Bishop,%20Nathaniel%20C&rft.date=2011-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086853502%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868535023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086853502&rft_id=info:pmid/&rfr_iscdi=true |