Loading…

Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization

This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two vari...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-09
Main Authors: Q Tran Dinh, Savorgnan, C, Diehl, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Q Tran Dinh
Savorgnan, C
Diehl, M
description This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086873279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086873279</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868732793</originalsourceid><addsrcrecordid>eNqNjE0KwjAQhYMgWLR3CLgu1MT-uBRRPID7EttpmdLO1CQV8fRG8ACu3nu8j28hIqX1Lin3Sq1E7FyfpqnKC5VlOhJwbHpG8sndOGjkZKHB2rNNarYWvk06eMxAHs0ga6YnvALFnTXjiNTJNhCTCQu8xVoS04AExkqePI74Nh6ZNmLZmsFB_Mu12F7Ot9M1CaYgd77qebYUrkqlZV4WWhUH_R_1AYHTSOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086873279</pqid></control><display><type>article</type><title>Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization</title><source>Publicly Available Content Database</source><creator>Q Tran Dinh ; Savorgnan, C ; Diehl, M</creator><creatorcontrib>Q Tran Dinh ; Savorgnan, C ; Diehl, M</creatorcontrib><description>This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computational geometry ; Convexity ; Electric power generation ; Hydroelectric plants ; Mathematical programming ; Nonlinear control ; Nonlinear programming ; Optimization ; Predictive control ; Predictor-corrector methods</subject><ispartof>arXiv.org, 2011-09</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086873279?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Q Tran Dinh</creatorcontrib><creatorcontrib>Savorgnan, C</creatorcontrib><creatorcontrib>Diehl, M</creatorcontrib><title>Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization</title><title>arXiv.org</title><description>This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.</description><subject>Algorithms</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Electric power generation</subject><subject>Hydroelectric plants</subject><subject>Mathematical programming</subject><subject>Nonlinear control</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictor-corrector methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjE0KwjAQhYMgWLR3CLgu1MT-uBRRPID7EttpmdLO1CQV8fRG8ACu3nu8j28hIqX1Lin3Sq1E7FyfpqnKC5VlOhJwbHpG8sndOGjkZKHB2rNNarYWvk06eMxAHs0ga6YnvALFnTXjiNTJNhCTCQu8xVoS04AExkqePI74Nh6ZNmLZmsFB_Mu12F7Ot9M1CaYgd77qebYUrkqlZV4WWhUH_R_1AYHTSOA</recordid><startdate>20110913</startdate><enddate>20110913</enddate><creator>Q Tran Dinh</creator><creator>Savorgnan, C</creator><creator>Diehl, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110913</creationdate><title>Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization</title><author>Q Tran Dinh ; Savorgnan, C ; Diehl, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868732793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Electric power generation</topic><topic>Hydroelectric plants</topic><topic>Mathematical programming</topic><topic>Nonlinear control</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictor-corrector methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Q Tran Dinh</creatorcontrib><creatorcontrib>Savorgnan, C</creatorcontrib><creatorcontrib>Diehl, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Q Tran Dinh</au><au>Savorgnan, C</au><au>Diehl, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization</atitle><jtitle>arXiv.org</jtitle><date>2011-09-13</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first one can be used to solve nonlinear programming problems while the second variant is aimed to treat online parametric nonlinear programming problems. The local convergence of these variants is proved. An application to a large-scale benchmark problem that originates from nonlinear model predictive control of a hydro power plant is implemented to examine the performance of the algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086873279
source Publicly Available Content Database
subjects Algorithms
Computational geometry
Convexity
Electric power generation
Hydroelectric plants
Mathematical programming
Nonlinear control
Nonlinear programming
Optimization
Predictive control
Predictor-corrector methods
title Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adjoint-based%20predictor-corrector%20sequential%20convex%20programming%20for%20parametric%20nonlinear%20optimization&rft.jtitle=arXiv.org&rft.au=Q%20Tran%20Dinh&rft.date=2011-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086873279%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868732793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086873279&rft_id=info:pmid/&rfr_iscdi=true