Loading…
A Pólya criterion for (strict) positive definiteness on the sphere
Positive definite functions are very important in both theory and applications of approximation theory, probability and statistics. In particular, identifying strictly positive definite kernels is of great interest as interpolation problems corresponding to these kernels are guaranteed to be poised....
Saved in:
Published in: | arXiv.org 2011-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Beatson, R K W zu Castell Y Xu |
description | Positive definite functions are very important in both theory and applications of approximation theory, probability and statistics. In particular, identifying strictly positive definite kernels is of great interest as interpolation problems corresponding to these kernels are guaranteed to be poised. A Bochner type result of Schoenberg characterises continuous positive definite zonal functions, \(f(\cos \cdot)\), on the sphere \(\Sdmone\), as those with nonnegative Gegenbauer coefficients. More recent results characterise strictly positive definite functions on \(\Sdmone\) by stronger conditions on the signs of the Gegenbauer coefficients. Unfortunately, given a function \(f\), checking the signs of all the Gegenbauer coefficients can be an onerous, or impossible, task. Therefore, it is natural to seek simpler sufficient conditions which guarantee (strict) positive definiteness. We state a conjecture which leads to a Pólya type criterion for functions to be (strictly) positive definite on the sphere \(\Sdmone\). In analogy to the case of the Euclidean space, the conjecture claims positivity of a certain integral involving Gegenbauer polynomials. We provide a proof of the conjecture for \(d\) from 3 to 8. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086884011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086884011</sourcerecordid><originalsourceid>FETCH-proquest_journals_20868840113</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdlQIOLw5pzJRIbkosyS1KDM_TyEtv0hBo7ikKDO5RFOhIL84sySzLFUhJTUtMw-oJC-1uFgBqKokI1WhuCAjtSiVh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijQwszCwsTAwMDY2JUwUAOqc6mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086884011</pqid></control><display><type>article</type><title>A Pólya criterion for (strict) positive definiteness on the sphere</title><source>Publicly Available Content Database</source><creator>Beatson, R K ; W zu Castell ; Y Xu</creator><creatorcontrib>Beatson, R K ; W zu Castell ; Y Xu</creatorcontrib><description>Positive definite functions are very important in both theory and applications of approximation theory, probability and statistics. In particular, identifying strictly positive definite kernels is of great interest as interpolation problems corresponding to these kernels are guaranteed to be poised. A Bochner type result of Schoenberg characterises continuous positive definite zonal functions, \(f(\cos \cdot)\), on the sphere \(\Sdmone\), as those with nonnegative Gegenbauer coefficients. More recent results characterise strictly positive definite functions on \(\Sdmone\) by stronger conditions on the signs of the Gegenbauer coefficients. Unfortunately, given a function \(f\), checking the signs of all the Gegenbauer coefficients can be an onerous, or impossible, task. Therefore, it is natural to seek simpler sufficient conditions which guarantee (strict) positive definiteness. We state a conjecture which leads to a Pólya type criterion for functions to be (strictly) positive definite on the sphere \(\Sdmone\). In analogy to the case of the Euclidean space, the conjecture claims positivity of a certain integral involving Gegenbauer polynomials. We provide a proof of the conjecture for \(d\) from 3 to 8.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Continuity (mathematics) ; Criteria ; Euclidean geometry ; Euclidean space ; Interpolation ; Kernel functions ; Mathematical analysis ; Polynomials</subject><ispartof>arXiv.org, 2011-10</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086884011?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Beatson, R K</creatorcontrib><creatorcontrib>W zu Castell</creatorcontrib><creatorcontrib>Y Xu</creatorcontrib><title>A Pólya criterion for (strict) positive definiteness on the sphere</title><title>arXiv.org</title><description>Positive definite functions are very important in both theory and applications of approximation theory, probability and statistics. In particular, identifying strictly positive definite kernels is of great interest as interpolation problems corresponding to these kernels are guaranteed to be poised. A Bochner type result of Schoenberg characterises continuous positive definite zonal functions, \(f(\cos \cdot)\), on the sphere \(\Sdmone\), as those with nonnegative Gegenbauer coefficients. More recent results characterise strictly positive definite functions on \(\Sdmone\) by stronger conditions on the signs of the Gegenbauer coefficients. Unfortunately, given a function \(f\), checking the signs of all the Gegenbauer coefficients can be an onerous, or impossible, task. Therefore, it is natural to seek simpler sufficient conditions which guarantee (strict) positive definiteness. We state a conjecture which leads to a Pólya type criterion for functions to be (strictly) positive definite on the sphere \(\Sdmone\). In analogy to the case of the Euclidean space, the conjecture claims positivity of a certain integral involving Gegenbauer polynomials. We provide a proof of the conjecture for \(d\) from 3 to 8.</description><subject>Coefficients</subject><subject>Continuity (mathematics)</subject><subject>Criteria</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Interpolation</subject><subject>Kernel functions</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdlQIOLw5pzJRIbkosyS1KDM_TyEtv0hBo7ikKDO5RFOhIL84sySzLFUhJTUtMw-oJC-1uFgBqKokI1WhuCAjtSiVh4E1LTGnOJUXSnMzKLu5hjh76BYU5ReWphaXxGfllxblAaXijQwszCwsTAwMDY2JUwUAOqc6mg</recordid><startdate>20111011</startdate><enddate>20111011</enddate><creator>Beatson, R K</creator><creator>W zu Castell</creator><creator>Y Xu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111011</creationdate><title>A Pólya criterion for (strict) positive definiteness on the sphere</title><author>Beatson, R K ; W zu Castell ; Y Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20868840113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Continuity (mathematics)</topic><topic>Criteria</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Interpolation</topic><topic>Kernel functions</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Beatson, R K</creatorcontrib><creatorcontrib>W zu Castell</creatorcontrib><creatorcontrib>Y Xu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beatson, R K</au><au>W zu Castell</au><au>Y Xu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Pólya criterion for (strict) positive definiteness on the sphere</atitle><jtitle>arXiv.org</jtitle><date>2011-10-11</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Positive definite functions are very important in both theory and applications of approximation theory, probability and statistics. In particular, identifying strictly positive definite kernels is of great interest as interpolation problems corresponding to these kernels are guaranteed to be poised. A Bochner type result of Schoenberg characterises continuous positive definite zonal functions, \(f(\cos \cdot)\), on the sphere \(\Sdmone\), as those with nonnegative Gegenbauer coefficients. More recent results characterise strictly positive definite functions on \(\Sdmone\) by stronger conditions on the signs of the Gegenbauer coefficients. Unfortunately, given a function \(f\), checking the signs of all the Gegenbauer coefficients can be an onerous, or impossible, task. Therefore, it is natural to seek simpler sufficient conditions which guarantee (strict) positive definiteness. We state a conjecture which leads to a Pólya type criterion for functions to be (strictly) positive definite on the sphere \(\Sdmone\). In analogy to the case of the Euclidean space, the conjecture claims positivity of a certain integral involving Gegenbauer polynomials. We provide a proof of the conjecture for \(d\) from 3 to 8.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086884011 |
source | Publicly Available Content Database |
subjects | Coefficients Continuity (mathematics) Criteria Euclidean geometry Euclidean space Interpolation Kernel functions Mathematical analysis Polynomials |
title | A Pólya criterion for (strict) positive definiteness on the sphere |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20P%C3%B3lya%20criterion%20for%20(strict)%20positive%20definiteness%20on%20the%20sphere&rft.jtitle=arXiv.org&rft.au=Beatson,%20R%20K&rft.date=2011-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2086884011%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20868840113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086884011&rft_id=info:pmid/&rfr_iscdi=true |