Loading…
Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space
A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the gro...
Saved in:
Published in: | arXiv.org 2001-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gufan, Yu M Popov, Al V Sartori, G Talamini, V Valente, G Vinberg, E B |
description | A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the group \(G=\){\bf O}\(_3\otimes\){\bf U}\(_1\times \). We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group-subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial \(G\)-invariant free energy, calculated by Mermin, are also determined. |
doi_str_mv | 10.48550/arxiv.0009080 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086934133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086934133</sourcerecordid><originalsourceid>FETCH-proquest_journals_20869341333</originalsourceid><addsrcrecordid>eNqNjctOw0AMRUeVkKigW9aWuk6ZzCQlXZfXB7CvrMSlU1E7eJwU_p4U8QGsrnTOlY5zd6VfVU1d-3vUrzSuvPcb3_iZm4cYy6KpQrh2i5yPkwjrh1DXce70heREpqmFxCNqQjawA4l-A_a9CrYHMLkg6MhIT4nRkjDIHt5VBu4gGxrlC3gszjgStMIdcf6liSFlMZV-SuQeW7p1V3v8yLT42xu3fH56274WU-1zoGy7owzKk9oF36w3sSpjjP97_QBsHlHq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086934133</pqid></control><display><type>article</type><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gufan, Yu M ; Popov, Al V ; Sartori, G ; Talamini, V ; Valente, G ; Vinberg, E B</creator><creatorcontrib>Gufan, Yu M ; Popov, Al V ; Sartori, G ; Talamini, V ; Valente, G ; Vinberg, E B</creatorcontrib><description>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the group \(G=\){\bf O}\(_3\otimes\){\bf U}\(_1\times <{\cal T}>\). We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group-subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial \(G\)-invariant free energy, calculated by Mermin, are also determined.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0009080</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Condensates ; Free energy ; Ground state ; Invariants ; Mathematical analysis ; Order parameters ; Phases ; Polynomials ; Subgroups</subject><ispartof>arXiv.org, 2001-03</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086934133?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gufan, Yu M</creatorcontrib><creatorcontrib>Popov, Al V</creatorcontrib><creatorcontrib>Sartori, G</creatorcontrib><creatorcontrib>Talamini, V</creatorcontrib><creatorcontrib>Valente, G</creatorcontrib><creatorcontrib>Vinberg, E B</creatorcontrib><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><title>arXiv.org</title><description>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the group \(G=\){\bf O}\(_3\otimes\){\bf U}\(_1\times <{\cal T}>\). We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group-subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial \(G\)-invariant free energy, calculated by Mermin, are also determined.</description><subject>Condensates</subject><subject>Free energy</subject><subject>Ground state</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Order parameters</subject><subject>Phases</subject><subject>Polynomials</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjctOw0AMRUeVkKigW9aWuk6ZzCQlXZfXB7CvrMSlU1E7eJwU_p4U8QGsrnTOlY5zd6VfVU1d-3vUrzSuvPcb3_iZm4cYy6KpQrh2i5yPkwjrh1DXce70heREpqmFxCNqQjawA4l-A_a9CrYHMLkg6MhIT4nRkjDIHt5VBu4gGxrlC3gszjgStMIdcf6liSFlMZV-SuQeW7p1V3v8yLT42xu3fH56274WU-1zoGy7owzKk9oF36w3sSpjjP97_QBsHlHq</recordid><startdate>20010330</startdate><enddate>20010330</enddate><creator>Gufan, Yu M</creator><creator>Popov, Al V</creator><creator>Sartori, G</creator><creator>Talamini, V</creator><creator>Valente, G</creator><creator>Vinberg, E B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20010330</creationdate><title>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</title><author>Gufan, Yu M ; Popov, Al V ; Sartori, G ; Talamini, V ; Valente, G ; Vinberg, E B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20869341333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensates</topic><topic>Free energy</topic><topic>Ground state</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Order parameters</topic><topic>Phases</topic><topic>Polynomials</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Gufan, Yu M</creatorcontrib><creatorcontrib>Popov, Al V</creatorcontrib><creatorcontrib>Sartori, G</creatorcontrib><creatorcontrib>Talamini, V</creatorcontrib><creatorcontrib>Valente, G</creatorcontrib><creatorcontrib>Vinberg, E B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gufan, Yu M</au><au>Popov, Al V</au><au>Sartori, G</au><au>Talamini, V</au><au>Valente, G</au><au>Vinberg, E B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space</atitle><jtitle>arXiv.org</jtitle><date>2001-03-30</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>A complete and rigorous determination of the possible ground states for D-wave pairing Bose condensates is presented, using a geometrical invariant theory approach to the problem. The order parameter is argued to be a vector, transforming according to a ten dimensional real representation of the group \(G=\){\bf O}\(_3\otimes\){\bf U}\(_1\times <{\cal T}>\). We determine the equalities and inequalities defining the orbit space of this linear group and its symmetry strata, which are in a one-to-one correspondence with the possible distinct phases of the system. We find 15 allowed phases (besides the unbroken one), with different symmetries, that we thoroughly determine. The group-subgroup relations between bordering phases are pointed out. The perturbative sixth degree corrections to the minimum of a fourth degree polynomial \(G\)-invariant free energy, calculated by Mermin, are also determined.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0009080</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2001-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2086934133 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Condensates Free energy Ground state Invariants Mathematical analysis Order parameters Phases Polynomials Subgroups |
title | Geometric invariant theory approach to the determination of ground states of D-wave condensates in isotropic space |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Geometric%20invariant%20theory%20approach%20to%20the%20determination%20of%20ground%20states%20of%20D-wave%20condensates%20in%20isotropic%20space&rft.jtitle=arXiv.org&rft.au=Gufan,%20Yu%20M&rft.date=2001-03-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0009080&rft_dat=%3Cproquest%3E2086934133%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20869341333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086934133&rft_id=info:pmid/&rfr_iscdi=true |