Loading…

Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space

Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimen\-sional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1994-02
Main Authors: Grosche, C, Pogosyan, G S, Sissakian, A N
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grosche, C
Pogosyan, G S
Sissakian, A N
description Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimen\-sional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integral formulation is not possible, we list in all soluble cases the path integral evaluations explicitly in terms of the propagators and the spectral expansions into the wave-functions.
doi_str_mv 10.48550/arxiv.9402121
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2086948115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086948115</sourcerecordid><originalsourceid>FETCH-proquest_journals_20869481153</originalsourceid><addsrcrecordid>eNqNjMFOAjEUABsTEwhy5fwSz7u23S0uXhUDNxI28UJCmt0HFJdX7Oui-PXWxA_wNJeZEWKiZF5WxsgHG77cJZ-VUiutbsRQF4XKqlLrgRgzH6WUevqojSmGglY2HmBJEffBdvDiuOmZnSfY-QDrkw--dcTv1-zNJSmQi9-w8hEpOtvxEyzzDdSfPgNLLdSHgJgmJ6TfRxrO-6ZzLVqC9dk2eCdudynD8R9H4v51Xj8vsnPwHz1y3B59H1LIWy2r6ayslDLF_6wfa5RPRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086948115</pqid></control><display><type>article</type><title>Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space</title><source>Publicly Available Content (ProQuest)</source><creator>Grosche, C ; Pogosyan, G S ; Sissakian, A N</creator><creatorcontrib>Grosche, C ; Pogosyan, G S ; Sissakian, A N</creatorcontrib><description>Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimen\-sional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integral formulation is not possible, we list in all soluble cases the path integral evaluations explicitly in terms of the propagators and the spectral expansions into the wave-functions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9402121</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coordinates ; Euclidean geometry ; Euclidean space ; Formulations ; Integrals ; Quantum theory</subject><ispartof>arXiv.org, 1994-02</ispartof><rights>1994. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2086948115?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Grosche, C</creatorcontrib><creatorcontrib>Pogosyan, G S</creatorcontrib><creatorcontrib>Sissakian, A N</creatorcontrib><title>Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space</title><title>arXiv.org</title><description>Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimen\-sional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integral formulation is not possible, we list in all soluble cases the path integral evaluations explicitly in terms of the propagators and the spectral expansions into the wave-functions.</description><subject>Coordinates</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Formulations</subject><subject>Integrals</subject><subject>Quantum theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMFOAjEUABsTEwhy5fwSz7u23S0uXhUDNxI28UJCmt0HFJdX7Oui-PXWxA_wNJeZEWKiZF5WxsgHG77cJZ-VUiutbsRQF4XKqlLrgRgzH6WUevqojSmGglY2HmBJEffBdvDiuOmZnSfY-QDrkw--dcTv1-zNJSmQi9-w8hEpOtvxEyzzDdSfPgNLLdSHgJgmJ6TfRxrO-6ZzLVqC9dk2eCdudynD8R9H4v51Xj8vsnPwHz1y3B59H1LIWy2r6ayslDLF_6wfa5RPRg</recordid><startdate>19940222</startdate><enddate>19940222</enddate><creator>Grosche, C</creator><creator>Pogosyan, G S</creator><creator>Sissakian, A N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19940222</creationdate><title>Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space</title><author>Grosche, C ; Pogosyan, G S ; Sissakian, A N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20869481153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Coordinates</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Formulations</topic><topic>Integrals</topic><topic>Quantum theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Grosche, C</creatorcontrib><creatorcontrib>Pogosyan, G S</creatorcontrib><creatorcontrib>Sissakian, A N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosche, C</au><au>Pogosyan, G S</au><au>Sissakian, A N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space</atitle><jtitle>arXiv.org</jtitle><date>1994-02-22</date><risdate>1994</risdate><eissn>2331-8422</eissn><abstract>Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimen\-sional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integral formulation is not possible, we list in all soluble cases the path integral evaluations explicitly in terms of the propagators and the spectral expansions into the wave-functions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9402121</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1994-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2086948115
source Publicly Available Content (ProQuest)
subjects Coordinates
Euclidean geometry
Euclidean space
Formulations
Integrals
Quantum theory
title Path Integral Discussion for Smorodinsky-Winternitz Potentials: I.\ Two- and Three Dimensional Euclidean Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Path%20Integral%20Discussion%20for%20Smorodinsky-Winternitz%20Potentials:%20I.%5C%20Two-%20and%20Three%20Dimensional%20Euclidean%20Space&rft.jtitle=arXiv.org&rft.au=Grosche,%20C&rft.date=1994-02-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9402121&rft_dat=%3Cproquest%3E2086948115%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20869481153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2086948115&rft_id=info:pmid/&rfr_iscdi=true