Loading…

Higher Spin Alternating Sign Matrices

We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2007-09
Main Authors: Behrend, Roger E, Knight, Vincent A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Behrend, Roger E
Knight, Vincent A
description We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r=1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087049766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087049766</sourcerecordid><originalsourceid>FETCH-proquest_journals_20870497663</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9chMz0gtUgguyMxTcMwpSS3KSyzJzEtXCM5Mz1PwTSwpykxOLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlQJ05xfFGBhbmBiaW5mZmxsSpAgDfji6_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087049766</pqid></control><display><type>article</type><title>Higher Spin Alternating Sign Matrices</title><source>Publicly Available Content (ProQuest)</source><creator>Behrend, Roger E ; Knight, Vincent A</creator><creatorcontrib>Behrend, Roger E ; Knight, Vincent A</creatorcontrib><description>We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r=1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Boundary conditions ; Polynomials ; Sums</subject><ispartof>arXiv.org, 2007-09</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/0708.2522.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087049766?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Behrend, Roger E</creatorcontrib><creatorcontrib>Knight, Vincent A</creatorcontrib><title>Higher Spin Alternating Sign Matrices</title><title>arXiv.org</title><description>We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r=1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.</description><subject>Apexes</subject><subject>Boundary conditions</subject><subject>Polynomials</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ9chMz0gtUgguyMxTcMwpSS3KSyzJzEtXCM5Mz1PwTSwpykxOLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlQJ05xfFGBhbmBiaW5mZmxsSpAgDfji6_</recordid><startdate>20070903</startdate><enddate>20070903</enddate><creator>Behrend, Roger E</creator><creator>Knight, Vincent A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20070903</creationdate><title>Higher Spin Alternating Sign Matrices</title><author>Behrend, Roger E ; Knight, Vincent A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20870497663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Apexes</topic><topic>Boundary conditions</topic><topic>Polynomials</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Behrend, Roger E</creatorcontrib><creatorcontrib>Knight, Vincent A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behrend, Roger E</au><au>Knight, Vincent A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Higher Spin Alternating Sign Matrices</atitle><jtitle>arXiv.org</jtitle><date>2007-09-03</date><risdate>2007</risdate><eissn>2331-8422</eissn><abstract>We define a higher spin alternating sign matrix to be an integer-entry square matrix in which, for a nonnegative integer r, all complete row and column sums are r, and all partial row and column sums extending from each end of the row or column are nonnegative. Such matrices correspond to configurations of spin r/2 statistical mechanical vertex models with domain-wall boundary conditions. The case r=1 gives standard alternating sign matrices, while the case in which all matrix entries are nonnegative gives semimagic squares. We show that the higher spin alternating sign matrices of size n are the integer points of the r-th dilate of an integral convex polytope of dimension (n-1)^2 whose vertices are the standard alternating sign matrices of size n. It then follows that, for fixed n, these matrices are enumerated by an Ehrhart polynomial in r.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2007-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087049766
source Publicly Available Content (ProQuest)
subjects Apexes
Boundary conditions
Polynomials
Sums
title Higher Spin Alternating Sign Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A34%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Higher%20Spin%20Alternating%20Sign%20Matrices&rft.jtitle=arXiv.org&rft.au=Behrend,%20Roger%20E&rft.date=2007-09-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087049766%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20870497663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087049766&rft_id=info:pmid/&rfr_iscdi=true