Loading…

Mode coupling of Schwarzschild perturbations: Ringdown frequencies

Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order grav...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-09
Main Authors: Pazos, Enrique, Brizuela, David, Martin-Garcia, Jose M, Tiglio, Manuel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pazos, Enrique
Brizuela, David
Martin-Garcia, Jose M
Tiglio, Manuel
description Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity \((\ell=2,m=\pm 2)\) perturbations and odd-parity \((\ell=2,m=0)\) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that ---in contrast to previous predictions in the literature--- the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.
doi_str_mv 10.48550/arxiv.1009.4665
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087095706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087095706</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-e44307f802e0ea76fa58e97db6c3f40b0b376b25e8f0d151deff76dac94c39d83</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgOObuHgOeW7_md73pUCdMBN19pMkX11GamrRO_Ost6OldHu8RclVBKYyUcGPTd_tVVgB1KZSSZ2TBOK8KIxi7IKucjwDAlGZS8gW5f4keqYvT0LX9B42BvrvDyaaf7A5t5-mAaZxSY8c29vmWvs2Sj6eehoSfE_auxXxJzoPtMq7-uSS7x4fdelNsX5-e13fbwspKFSgEBx0MMAS0WgUrDdbaN8rxIKCBhmvVMIkmgK9k5TEErbx1tXC89oYvyfVfdkhxXudxf4xT6ufjnoHRUEsNiv8CeftMiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087095706</pqid></control><display><type>article</type><title>Mode coupling of Schwarzschild perturbations: Ringdown frequencies</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Pazos, Enrique ; Brizuela, David ; Martin-Garcia, Jose M ; Tiglio, Manuel</creator><creatorcontrib>Pazos, Enrique ; Brizuela, David ; Martin-Garcia, Jose M ; Tiglio, Manuel</creatorcontrib><description>Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity \((\ell=2,m=\pm 2)\) perturbations and odd-parity \((\ell=2,m=0)\) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that ---in contrast to previous predictions in the literature--- the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1009.4665</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Coupling ; Datasets ; Decay ; Gravitation ; Gravitational waves ; Linearization ; Mathematical models ; Multipoles ; Parity ; Perturbation theory</subject><ispartof>arXiv.org, 2010-09</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087095706?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Pazos, Enrique</creatorcontrib><creatorcontrib>Brizuela, David</creatorcontrib><creatorcontrib>Martin-Garcia, Jose M</creatorcontrib><creatorcontrib>Tiglio, Manuel</creatorcontrib><title>Mode coupling of Schwarzschild perturbations: Ringdown frequencies</title><title>arXiv.org</title><description>Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity \((\ell=2,m=\pm 2)\) perturbations and odd-parity \((\ell=2,m=0)\) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that ---in contrast to previous predictions in the literature--- the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Datasets</subject><subject>Decay</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Multipoles</subject><subject>Parity</subject><subject>Perturbation theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgOObuHgOeW7_md73pUCdMBN19pMkX11GamrRO_Ost6OldHu8RclVBKYyUcGPTd_tVVgB1KZSSZ2TBOK8KIxi7IKucjwDAlGZS8gW5f4keqYvT0LX9B42BvrvDyaaf7A5t5-mAaZxSY8c29vmWvs2Sj6eehoSfE_auxXxJzoPtMq7-uSS7x4fdelNsX5-e13fbwspKFSgEBx0MMAS0WgUrDdbaN8rxIKCBhmvVMIkmgK9k5TEErbx1tXC89oYvyfVfdkhxXudxf4xT6ufjnoHRUEsNiv8CeftMiw</recordid><startdate>20100923</startdate><enddate>20100923</enddate><creator>Pazos, Enrique</creator><creator>Brizuela, David</creator><creator>Martin-Garcia, Jose M</creator><creator>Tiglio, Manuel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100923</creationdate><title>Mode coupling of Schwarzschild perturbations: Ringdown frequencies</title><author>Pazos, Enrique ; Brizuela, David ; Martin-Garcia, Jose M ; Tiglio, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-e44307f802e0ea76fa58e97db6c3f40b0b376b25e8f0d151deff76dac94c39d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Datasets</topic><topic>Decay</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Multipoles</topic><topic>Parity</topic><topic>Perturbation theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pazos, Enrique</creatorcontrib><creatorcontrib>Brizuela, David</creatorcontrib><creatorcontrib>Martin-Garcia, Jose M</creatorcontrib><creatorcontrib>Tiglio, Manuel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pazos, Enrique</au><au>Brizuela, David</au><au>Martin-Garcia, Jose M</au><au>Tiglio, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode coupling of Schwarzschild perturbations: Ringdown frequencies</atitle><jtitle>arXiv.org</jtitle><date>2010-09-23</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity \((\ell=2,m=\pm 2)\) perturbations and odd-parity \((\ell=2,m=0)\) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that ---in contrast to previous predictions in the literature--- the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1009.4665</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087095706
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Computer simulation
Coupling
Datasets
Decay
Gravitation
Gravitational waves
Linearization
Mathematical models
Multipoles
Parity
Perturbation theory
title Mode coupling of Schwarzschild perturbations: Ringdown frequencies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20coupling%20of%20Schwarzschild%20perturbations:%20Ringdown%20frequencies&rft.jtitle=arXiv.org&rft.au=Pazos,%20Enrique&rft.date=2010-09-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1009.4665&rft_dat=%3Cproquest%3E2087095706%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-e44307f802e0ea76fa58e97db6c3f40b0b376b25e8f0d151deff76dac94c39d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087095706&rft_id=info:pmid/&rfr_iscdi=true