Loading…
Banach spaces without approximation properties of type p
The main purpose of this note is to show that the question posed in the paper of Sinha D.P. and Karn A.K.("Compact operators which factor through subspaces of \(l_p\) Math. Nachr. 281, 2008, 412-423; see the very end of that paper) has a negative answer, and that the answer was known, essential...
Saved in:
Published in: | arXiv.org 2010-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Reinov, Oleg Latif, Qaisar |
description | The main purpose of this note is to show that the question posed in the paper of Sinha D.P. and Karn A.K.("Compact operators which factor through subspaces of \(l_p\) Math. Nachr. 281, 2008, 412-423; see the very end of that paper) has a negative answer, and that the answer was known, essentially, in 1985 after the papers "Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints" (Math. Nachr. 109(1982), 125-134) and "Approximation of operators in Banach spaces" (Application of functional analysis in the approximation theory (KGU, Kalinin), 1985, 128-142) by Reinov O.I. have been appeared in 1982 and in 1985 respectively. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087147762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087147762</sourcerecordid><originalsourceid>FETCH-proquest_journals_20871477623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcErMS0zOUCguSExOLVYozyzJyC8tUUgsKCjKr8jMTSzJzM9TALILUotKMoEK8tMUSioLUhUKeBhY0xJzilN5oTQ3g7Kba4izhy5QcWFpanFJfFZ-aVEeUCreyMDC3NDE3NzMyJg4VQCJBDak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087147762</pqid></control><display><type>article</type><title>Banach spaces without approximation properties of type p</title><source>Publicly Available Content Database</source><creator>Reinov, Oleg ; Latif, Qaisar</creator><creatorcontrib>Reinov, Oleg ; Latif, Qaisar</creatorcontrib><description>The main purpose of this note is to show that the question posed in the paper of Sinha D.P. and Karn A.K.("Compact operators which factor through subspaces of \(l_p\) Math. Nachr. 281, 2008, 412-423; see the very end of that paper) has a negative answer, and that the answer was known, essentially, in 1985 after the papers "Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints" (Math. Nachr. 109(1982), 125-134) and "Approximation of operators in Banach spaces" (Application of functional analysis in the approximation theory (KGU, Kalinin), 1985, 128-142) by Reinov O.I. have been appeared in 1982 and in 1985 respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adjoints ; Approximation ; Banach spaces ; Error analysis ; Functional analysis ; Mathematical analysis ; Operators (mathematics) ; Subspaces</subject><ispartof>arXiv.org, 2010-04</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087147762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><title>Banach spaces without approximation properties of type p</title><title>arXiv.org</title><description>The main purpose of this note is to show that the question posed in the paper of Sinha D.P. and Karn A.K.("Compact operators which factor through subspaces of \(l_p\) Math. Nachr. 281, 2008, 412-423; see the very end of that paper) has a negative answer, and that the answer was known, essentially, in 1985 after the papers "Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints" (Math. Nachr. 109(1982), 125-134) and "Approximation of operators in Banach spaces" (Application of functional analysis in the approximation theory (KGU, Kalinin), 1985, 128-142) by Reinov O.I. have been appeared in 1982 and in 1985 respectively.</description><subject>Adjoints</subject><subject>Approximation</subject><subject>Banach spaces</subject><subject>Error analysis</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcErMS0zOUCguSExOLVYozyzJyC8tUUgsKCjKr8jMTSzJzM9TALILUotKMoEK8tMUSioLUhUKeBhY0xJzilN5oTQ3g7Kba4izhy5QcWFpanFJfFZ-aVEeUCreyMDC3NDE3NzMyJg4VQCJBDak</recordid><startdate>20100425</startdate><enddate>20100425</enddate><creator>Reinov, Oleg</creator><creator>Latif, Qaisar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20100425</creationdate><title>Banach spaces without approximation properties of type p</title><author>Reinov, Oleg ; Latif, Qaisar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20871477623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adjoints</topic><topic>Approximation</topic><topic>Banach spaces</topic><topic>Error analysis</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Reinov, Oleg</creatorcontrib><creatorcontrib>Latif, Qaisar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinov, Oleg</au><au>Latif, Qaisar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Banach spaces without approximation properties of type p</atitle><jtitle>arXiv.org</jtitle><date>2010-04-25</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>The main purpose of this note is to show that the question posed in the paper of Sinha D.P. and Karn A.K.("Compact operators which factor through subspaces of \(l_p\) Math. Nachr. 281, 2008, 412-423; see the very end of that paper) has a negative answer, and that the answer was known, essentially, in 1985 after the papers "Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints" (Math. Nachr. 109(1982), 125-134) and "Approximation of operators in Banach spaces" (Application of functional analysis in the approximation theory (KGU, Kalinin), 1985, 128-142) by Reinov O.I. have been appeared in 1982 and in 1985 respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087147762 |
source | Publicly Available Content Database |
subjects | Adjoints Approximation Banach spaces Error analysis Functional analysis Mathematical analysis Operators (mathematics) Subspaces |
title | Banach spaces without approximation properties of type p |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Banach%20spaces%20without%20approximation%20properties%20of%20type%20p&rft.jtitle=arXiv.org&rft.au=Reinov,%20Oleg&rft.date=2010-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087147762%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20871477623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087147762&rft_id=info:pmid/&rfr_iscdi=true |