Loading…
Optimization of Planck/LFI on--board data handling
To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This pa...
Saved in:
Published in: | arXiv.org 2010-01 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maris, M Tomasi, M Galeotta, S Miccolis, M Hildebrandt, S Frailis, M Rohlfs, R Morisset, N Zacchei, A Bersanelli, M Binko, P Burigana, C Butler, R C Cuttaia, F Chulani, H D'Arcangelo, O Fogliani, S Franceschi, E Gasparo, F Gomez, F Gregorio, A Herreros, J M Leonardi, R Leutenegger, P Maggio, G Maino, D Malaspina, M Mandolesi, N Manzato, P Meharga, M Meinhold, P Mennella, A Pasian, F Perrotta, F Rebolo, R Turler, M Zonca, A |
description | To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ |
doi_str_mv | 10.48550/arxiv.1001.4737 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087180081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087180081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-9a0cd3cd4d552da4ea4370d7542737205f5c30fbb3e3280986770e52f77dde743</originalsourceid><addsrcrecordid>eNotjsFKAzEQQIMgWGrvHhc8p51MMp30KMVqYaEeei-zm6xuXZO6uxXx6y3o6d3ee0rdGZg7TwQL6b_br7kBMHPHlq_UBK012jvEGzUbhiMA4JKRyE4U7k5j-9H-yNjmVOSmeOkk1e-LcrMtctK6ytKHIsgoxZuk0LXp9VZdN9INcfbPqdpvHvfrZ13unrbrh1ILGaNXAnWwdXCBCIO4KM4yBCaHlykEaqi20FSVjRY9rPySGSJhwxxCZGen6v5Pe-rz5zkO4-GYz326FA8Ino0H8Mb-At10Q-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087180081</pqid></control><display><type>article</type><title>Optimization of Planck/LFI on--board data handling</title><source>Publicly Available Content Database</source><creator>Maris, M ; Tomasi, M ; Galeotta, S ; Miccolis, M ; Hildebrandt, S ; Frailis, M ; Rohlfs, R ; Morisset, N ; Zacchei, A ; Bersanelli, M ; Binko, P ; Burigana, C ; Butler, R C ; Cuttaia, F ; Chulani, H ; D'Arcangelo, O ; Fogliani, S ; Franceschi, E ; Gasparo, F ; Gomez, F ; Gregorio, A ; Herreros, J M ; Leonardi, R ; Leutenegger, P ; Maggio, G ; Maino, D ; Malaspina, M ; Mandolesi, N ; Manzato, P ; Meharga, M ; Meinhold, P ; Mennella, A ; Pasian, F ; Perrotta, F ; Rebolo, R ; Turler, M ; Zonca, A</creator><creatorcontrib>Maris, M ; Tomasi, M ; Galeotta, S ; Miccolis, M ; Hildebrandt, S ; Frailis, M ; Rohlfs, R ; Morisset, N ; Zacchei, A ; Bersanelli, M ; Binko, P ; Burigana, C ; Butler, R C ; Cuttaia, F ; Chulani, H ; D'Arcangelo, O ; Fogliani, S ; Franceschi, E ; Gasparo, F ; Gomez, F ; Gregorio, A ; Herreros, J M ; Leonardi, R ; Leutenegger, P ; Maggio, G ; Maino, D ; Malaspina, M ; Mandolesi, N ; Manzato, P ; Meharga, M ; Meinhold, P ; Mennella, A ; Pasian, F ; Perrotta, F ; Rebolo, R ; Turler, M ; Zonca, A</creatorcontrib><description>To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1001.4737</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Data analysis ; Diagnostic systems ; Ground tests ; Noise ; Onboard ; Optimization ; Prelaunch tests ; Process parameters ; Signal processing ; Telemetry ; White noise</subject><ispartof>arXiv.org, 2010-01</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087180081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Maris, M</creatorcontrib><creatorcontrib>Tomasi, M</creatorcontrib><creatorcontrib>Galeotta, S</creatorcontrib><creatorcontrib>Miccolis, M</creatorcontrib><creatorcontrib>Hildebrandt, S</creatorcontrib><creatorcontrib>Frailis, M</creatorcontrib><creatorcontrib>Rohlfs, R</creatorcontrib><creatorcontrib>Morisset, N</creatorcontrib><creatorcontrib>Zacchei, A</creatorcontrib><creatorcontrib>Bersanelli, M</creatorcontrib><creatorcontrib>Binko, P</creatorcontrib><creatorcontrib>Burigana, C</creatorcontrib><creatorcontrib>Butler, R C</creatorcontrib><creatorcontrib>Cuttaia, F</creatorcontrib><creatorcontrib>Chulani, H</creatorcontrib><creatorcontrib>D'Arcangelo, O</creatorcontrib><creatorcontrib>Fogliani, S</creatorcontrib><creatorcontrib>Franceschi, E</creatorcontrib><creatorcontrib>Gasparo, F</creatorcontrib><creatorcontrib>Gomez, F</creatorcontrib><creatorcontrib>Gregorio, A</creatorcontrib><creatorcontrib>Herreros, J M</creatorcontrib><creatorcontrib>Leonardi, R</creatorcontrib><creatorcontrib>Leutenegger, P</creatorcontrib><creatorcontrib>Maggio, G</creatorcontrib><creatorcontrib>Maino, D</creatorcontrib><creatorcontrib>Malaspina, M</creatorcontrib><creatorcontrib>Mandolesi, N</creatorcontrib><creatorcontrib>Manzato, P</creatorcontrib><creatorcontrib>Meharga, M</creatorcontrib><creatorcontrib>Meinhold, P</creatorcontrib><creatorcontrib>Mennella, A</creatorcontrib><creatorcontrib>Pasian, F</creatorcontrib><creatorcontrib>Perrotta, F</creatorcontrib><creatorcontrib>Rebolo, R</creatorcontrib><creatorcontrib>Turler, M</creatorcontrib><creatorcontrib>Zonca, A</creatorcontrib><title>Optimization of Planck/LFI on--board data handling</title><title>arXiv.org</title><description>To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Diagnostic systems</subject><subject>Ground tests</subject><subject>Noise</subject><subject>Onboard</subject><subject>Optimization</subject><subject>Prelaunch tests</subject><subject>Process parameters</subject><subject>Signal processing</subject><subject>Telemetry</subject><subject>White noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjsFKAzEQQIMgWGrvHhc8p51MMp30KMVqYaEeei-zm6xuXZO6uxXx6y3o6d3ee0rdGZg7TwQL6b_br7kBMHPHlq_UBK012jvEGzUbhiMA4JKRyE4U7k5j-9H-yNjmVOSmeOkk1e-LcrMtctK6ytKHIsgoxZuk0LXp9VZdN9INcfbPqdpvHvfrZ13unrbrh1ILGaNXAnWwdXCBCIO4KM4yBCaHlykEaqi20FSVjRY9rPySGSJhwxxCZGen6v5Pe-rz5zkO4-GYz326FA8Ino0H8Mb-At10Q-Y</recordid><startdate>20100126</startdate><enddate>20100126</enddate><creator>Maris, M</creator><creator>Tomasi, M</creator><creator>Galeotta, S</creator><creator>Miccolis, M</creator><creator>Hildebrandt, S</creator><creator>Frailis, M</creator><creator>Rohlfs, R</creator><creator>Morisset, N</creator><creator>Zacchei, A</creator><creator>Bersanelli, M</creator><creator>Binko, P</creator><creator>Burigana, C</creator><creator>Butler, R C</creator><creator>Cuttaia, F</creator><creator>Chulani, H</creator><creator>D'Arcangelo, O</creator><creator>Fogliani, S</creator><creator>Franceschi, E</creator><creator>Gasparo, F</creator><creator>Gomez, F</creator><creator>Gregorio, A</creator><creator>Herreros, J M</creator><creator>Leonardi, R</creator><creator>Leutenegger, P</creator><creator>Maggio, G</creator><creator>Maino, D</creator><creator>Malaspina, M</creator><creator>Mandolesi, N</creator><creator>Manzato, P</creator><creator>Meharga, M</creator><creator>Meinhold, P</creator><creator>Mennella, A</creator><creator>Pasian, F</creator><creator>Perrotta, F</creator><creator>Rebolo, R</creator><creator>Turler, M</creator><creator>Zonca, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100126</creationdate><title>Optimization of Planck/LFI on--board data handling</title><author>Maris, M ; Tomasi, M ; Galeotta, S ; Miccolis, M ; Hildebrandt, S ; Frailis, M ; Rohlfs, R ; Morisset, N ; Zacchei, A ; Bersanelli, M ; Binko, P ; Burigana, C ; Butler, R C ; Cuttaia, F ; Chulani, H ; D'Arcangelo, O ; Fogliani, S ; Franceschi, E ; Gasparo, F ; Gomez, F ; Gregorio, A ; Herreros, J M ; Leonardi, R ; Leutenegger, P ; Maggio, G ; Maino, D ; Malaspina, M ; Mandolesi, N ; Manzato, P ; Meharga, M ; Meinhold, P ; Mennella, A ; Pasian, F ; Perrotta, F ; Rebolo, R ; Turler, M ; Zonca, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-9a0cd3cd4d552da4ea4370d7542737205f5c30fbb3e3280986770e52f77dde743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Diagnostic systems</topic><topic>Ground tests</topic><topic>Noise</topic><topic>Onboard</topic><topic>Optimization</topic><topic>Prelaunch tests</topic><topic>Process parameters</topic><topic>Signal processing</topic><topic>Telemetry</topic><topic>White noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Maris, M</creatorcontrib><creatorcontrib>Tomasi, M</creatorcontrib><creatorcontrib>Galeotta, S</creatorcontrib><creatorcontrib>Miccolis, M</creatorcontrib><creatorcontrib>Hildebrandt, S</creatorcontrib><creatorcontrib>Frailis, M</creatorcontrib><creatorcontrib>Rohlfs, R</creatorcontrib><creatorcontrib>Morisset, N</creatorcontrib><creatorcontrib>Zacchei, A</creatorcontrib><creatorcontrib>Bersanelli, M</creatorcontrib><creatorcontrib>Binko, P</creatorcontrib><creatorcontrib>Burigana, C</creatorcontrib><creatorcontrib>Butler, R C</creatorcontrib><creatorcontrib>Cuttaia, F</creatorcontrib><creatorcontrib>Chulani, H</creatorcontrib><creatorcontrib>D'Arcangelo, O</creatorcontrib><creatorcontrib>Fogliani, S</creatorcontrib><creatorcontrib>Franceschi, E</creatorcontrib><creatorcontrib>Gasparo, F</creatorcontrib><creatorcontrib>Gomez, F</creatorcontrib><creatorcontrib>Gregorio, A</creatorcontrib><creatorcontrib>Herreros, J M</creatorcontrib><creatorcontrib>Leonardi, R</creatorcontrib><creatorcontrib>Leutenegger, P</creatorcontrib><creatorcontrib>Maggio, G</creatorcontrib><creatorcontrib>Maino, D</creatorcontrib><creatorcontrib>Malaspina, M</creatorcontrib><creatorcontrib>Mandolesi, N</creatorcontrib><creatorcontrib>Manzato, P</creatorcontrib><creatorcontrib>Meharga, M</creatorcontrib><creatorcontrib>Meinhold, P</creatorcontrib><creatorcontrib>Mennella, A</creatorcontrib><creatorcontrib>Pasian, F</creatorcontrib><creatorcontrib>Perrotta, F</creatorcontrib><creatorcontrib>Rebolo, R</creatorcontrib><creatorcontrib>Turler, M</creatorcontrib><creatorcontrib>Zonca, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maris, M</au><au>Tomasi, M</au><au>Galeotta, S</au><au>Miccolis, M</au><au>Hildebrandt, S</au><au>Frailis, M</au><au>Rohlfs, R</au><au>Morisset, N</au><au>Zacchei, A</au><au>Bersanelli, M</au><au>Binko, P</au><au>Burigana, C</au><au>Butler, R C</au><au>Cuttaia, F</au><au>Chulani, H</au><au>D'Arcangelo, O</au><au>Fogliani, S</au><au>Franceschi, E</au><au>Gasparo, F</au><au>Gomez, F</au><au>Gregorio, A</au><au>Herreros, J M</au><au>Leonardi, R</au><au>Leutenegger, P</au><au>Maggio, G</au><au>Maino, D</au><au>Malaspina, M</au><au>Mandolesi, N</au><au>Manzato, P</au><au>Meharga, M</au><au>Meinhold, P</au><au>Mennella, A</au><au>Pasian, F</au><au>Perrotta, F</au><au>Rebolo, R</au><au>Turler, M</au><au>Zonca, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Planck/LFI on--board data handling</atitle><jtitle>arXiv.org</jtitle><date>2010-01-26</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>To asses stability against 1/f noise, the Low Frequency Instrument (LFI) onboard the Planck mission will acquire data at a rate much higher than the data rate allowed by its telemetry bandwith of 35.5 kbps. The data are processed by an onboard pipeline, followed onground by a reversing step. This paper illustrates the LFI scientific onboard processing to fit the allowed datarate. This is a lossy process tuned by using a set of 5 parameters Naver, r1, r2, q, O for each of the 44 LFI detectors. The paper quantifies the level of distortion introduced by the onboard processing, EpsilonQ, as a function of these parameters. It describes the method of optimizing the onboard processing chain. The tuning procedure is based on a optimization algorithm applied to unprocessed and uncompressed raw data provided either by simulations, prelaunch tests or data taken from LFI operating in diagnostic mode. All the needed optimization steps are performed by an automated tool, OCA2, which ends with optimized parameters and produces a set of statistical indicators, among them the compression rate Cr and EpsilonQ. For Planck/LFI the requirements are Cr = 2.4 and EpsilonQ <= 10% of the rms of the instrumental white noise. To speedup the process an analytical model is developed that is able to extract most of the relevant information on EpsilonQ and Cr as a function of the signal statistics and the processing parameters. This model will be of interest for the instrument data analysis. The method was applied during ground tests when the instrument was operating in conditions representative of flight. Optimized parameters were obtained and the performance has been verified, the required data rate of 35.5 Kbps has been achieved while keeping EpsilonQ at a level of 3.8% of white noise rms well within the requirements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1001.4737</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087180081 |
source | Publicly Available Content Database |
subjects | Algorithms Computer simulation Data analysis Diagnostic systems Ground tests Noise Onboard Optimization Prelaunch tests Process parameters Signal processing Telemetry White noise |
title | Optimization of Planck/LFI on--board data handling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Planck/LFI%20on--board%20data%20handling&rft.jtitle=arXiv.org&rft.au=Maris,%20M&rft.date=2010-01-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1001.4737&rft_dat=%3Cproquest%3E2087180081%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-9a0cd3cd4d552da4ea4370d7542737205f5c30fbb3e3280986770e52f77dde743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087180081&rft_id=info:pmid/&rfr_iscdi=true |