Loading…
Discrete compactness for the p-version of discrete differential forms
In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discre...
Saved in:
Published in: | arXiv.org 2010-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Boffi, Daniele Costabel, Martin Dauge, Monique Demkowicz, Leszek Hiptmair, Ralf |
description | In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of any order on a d-dimensional polyhedral domain. One of the main tools for the analysis is a recently introduced smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., (2010)]. For forms of order 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p-version and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nédélec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087368146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087368146</sourcerecordid><originalsourceid>FETCH-proquest_journals_20873681463</originalsourceid><addsrcrecordid>eNqNykELwiAYgGEJgkbtPwidBaeb816LfkD3IdsnOTY1P9fvr6Dund7D-2xIIaSsmK6F2JESceKcC9WKppEF6c4OhwQZ6BCWaIbsAZHakGi-A43sCQld8DRYOv7k6KyFBD47M3_oggeytWZGKL_dk-Olu52uLKbwWAFzP4U1-ffqBdetVLqqlfxPvQCwpDte</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087368146</pqid></control><display><type>article</type><title>Discrete compactness for the p-version of discrete differential forms</title><source>Publicly Available Content Database</source><creator>Boffi, Daniele ; Costabel, Martin ; Dauge, Monique ; Demkowicz, Leszek ; Hiptmair, Ralf</creator><creatorcontrib>Boffi, Daniele ; Costabel, Martin ; Dauge, Monique ; Demkowicz, Leszek ; Hiptmair, Ralf</creatorcontrib><description>In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of any order on a d-dimensional polyhedral domain. One of the main tools for the analysis is a recently introduced smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., (2010)]. For forms of order 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p-version and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nédélec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cost analysis ; Domains ; Eigenvalues ; Finite element method ; Operators (mathematics) ; Parallelepipeds ; Parallelograms ; Tetrahedra ; Triangles</subject><ispartof>arXiv.org, 2010-10</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087368146?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Boffi, Daniele</creatorcontrib><creatorcontrib>Costabel, Martin</creatorcontrib><creatorcontrib>Dauge, Monique</creatorcontrib><creatorcontrib>Demkowicz, Leszek</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><title>Discrete compactness for the p-version of discrete differential forms</title><title>arXiv.org</title><description>In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of any order on a d-dimensional polyhedral domain. One of the main tools for the analysis is a recently introduced smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., (2010)]. For forms of order 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p-version and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nédélec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory.</description><subject>Cost analysis</subject><subject>Domains</subject><subject>Eigenvalues</subject><subject>Finite element method</subject><subject>Operators (mathematics)</subject><subject>Parallelepipeds</subject><subject>Parallelograms</subject><subject>Tetrahedra</subject><subject>Triangles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELwiAYgGEJgkbtPwidBaeb816LfkD3IdsnOTY1P9fvr6Dund7D-2xIIaSsmK6F2JESceKcC9WKppEF6c4OhwQZ6BCWaIbsAZHakGi-A43sCQld8DRYOv7k6KyFBD47M3_oggeytWZGKL_dk-Olu52uLKbwWAFzP4U1-ffqBdetVLqqlfxPvQCwpDte</recordid><startdate>20101027</startdate><enddate>20101027</enddate><creator>Boffi, Daniele</creator><creator>Costabel, Martin</creator><creator>Dauge, Monique</creator><creator>Demkowicz, Leszek</creator><creator>Hiptmair, Ralf</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101027</creationdate><title>Discrete compactness for the p-version of discrete differential forms</title><author>Boffi, Daniele ; Costabel, Martin ; Dauge, Monique ; Demkowicz, Leszek ; Hiptmair, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20873681463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cost analysis</topic><topic>Domains</topic><topic>Eigenvalues</topic><topic>Finite element method</topic><topic>Operators (mathematics)</topic><topic>Parallelepipeds</topic><topic>Parallelograms</topic><topic>Tetrahedra</topic><topic>Triangles</topic><toplevel>online_resources</toplevel><creatorcontrib>Boffi, Daniele</creatorcontrib><creatorcontrib>Costabel, Martin</creatorcontrib><creatorcontrib>Dauge, Monique</creatorcontrib><creatorcontrib>Demkowicz, Leszek</creatorcontrib><creatorcontrib>Hiptmair, Ralf</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boffi, Daniele</au><au>Costabel, Martin</au><au>Dauge, Monique</au><au>Demkowicz, Leszek</au><au>Hiptmair, Ralf</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Discrete compactness for the p-version of discrete differential forms</atitle><jtitle>arXiv.org</jtitle><date>2010-10-27</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove the discrete compactness property for a wide class of p-version finite element approximations of non-elliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of any order on a d-dimensional polyhedral domain. One of the main tools for the analysis is a recently introduced smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Math. Z., (2010)]. For forms of order 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p-version and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nédélec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087368146 |
source | Publicly Available Content Database |
subjects | Cost analysis Domains Eigenvalues Finite element method Operators (mathematics) Parallelepipeds Parallelograms Tetrahedra Triangles |
title | Discrete compactness for the p-version of discrete differential forms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Discrete%20compactness%20for%20the%20p-version%20of%20discrete%20differential%20forms&rft.jtitle=arXiv.org&rft.au=Boffi,%20Daniele&rft.date=2010-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087368146%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20873681463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087368146&rft_id=info:pmid/&rfr_iscdi=true |