Loading…

Direct Data Domain STAP using Sparse Representation of Clutter Spectrum

Space-time adaptive processing (STAP) is an effective tool for detecting a moving target in the airborne radar system. Due to the fast-changing clutter scenario and/or non side-looking configuration, the stationarity of the training data is destroyed such that the statistical-based methods suffer pe...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-08
Main Authors: Sun, Ke, Meng, Huadong, Wang, Yongliang, Wang, Xiqin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Space-time adaptive processing (STAP) is an effective tool for detecting a moving target in the airborne radar system. Due to the fast-changing clutter scenario and/or non side-looking configuration, the stationarity of the training data is destroyed such that the statistical-based methods suffer performance degradation. Direct data domain (D3) methods avoid non-stationary training data and can effectively suppress the clutter within the test cell. However, this benefit comes at the cost of a reduced system degree of freedom (DOF), which results in performance loss. In this paper, by exploiting the intrinsic sparsity of the spectral distribution, a new direct data domain approach using sparse representation (D3SR) is proposed, which seeks to estimate the high-resolution space-time spectrum with only the test cell. The simulation of both side-looking and non side-looking cases has illustrated the effectiveness of the D3SR spectrum estimation using focal underdetermined system solution (FOCUSS) and norm minimization. Then the clutter covariance matrix (CCM) and the corresponding adaptive filter can be effectively obtained. Since D3SR maintains the full system DOF, it can achieve better performance of output signal-clutter-ratio (SCR) and minimum detectable velocity (MDV) than current D3 methods, e.g., direct data domain least squares (D3LS). Thus D3SR is more effective against the range-dependent clutter and interference in the non-stationary clutter scenario.
ISSN:2331-8422