Loading…
Incommensurate magnetic order and phase separation in the two-dimensional Hubbard model with nearest and next-nearest neighbor hopping
We consider the ground state magnetic phase diagram of the two-dimensional Hubbard model with nearest and next-nearest neighbor hopping in terms of electronic density and interaction. We treat commensurate ferro- and antiferromagnetic, as well as incommensurate (spiral) magnetic phases. The first-or...
Saved in:
Published in: | arXiv.org 2009-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the ground state magnetic phase diagram of the two-dimensional Hubbard model with nearest and next-nearest neighbor hopping in terms of electronic density and interaction. We treat commensurate ferro- and antiferromagnetic, as well as incommensurate (spiral) magnetic phases. The first-order magnetic transitions with changing chemical potential, resulting in a phase separation (PS) in terms of density, are found between ferromagnetic, antiferromagnetic and spiral magnetic phases. We argue that the account of PS has a dramatic influence on the phase diagram in the vicinity of half-filling. The results imply possible interpretation of the unusual behavior of magnetic properties of one-layer cuprates in terms of PS between collinear and spiral magnetic phases. The relation of the results obtained to the magnetic properties of ruthenates is also discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0912.0992 |