Loading…
Formulae of Partial Reduction for Linear Systems of First Order Operator Equations
This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is o...
Saved in:
Published in: | arXiv.org 2010-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Malesevic, Branko Todoric, Dragana Jovovic, Ivana Telebakovic, Sonja |
description | This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087545056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087545056</sourcerecordid><originalsourceid>FETCH-proquest_journals_20875450563</originalsourceid><addsrcrecordid>eNqNy8EKgkAUheEhCJLyHS60FqbRUfehtAgMay9DjjCijt47s-jtU-gBWp3F_50dC0QcX6I8EeLAQqKecy7STEgZB6wuLY5-UBpsBw-FzqgBat36tzN2gs4i3M2kFcLzQ06PtLnSIDmosNUI1axRuZUVi1fbh05s36mBdPjbIzuXxet6i2a0i9fkmt56nNbUCJ5nMpFcpvF_6gvP2D-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087545056</pqid></control><display><type>article</type><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><source>ProQuest - Publicly Available Content Database</source><creator>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</creator><creatorcontrib>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</creatorcontrib><description>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Canonical forms ; Linear operators ; Linear systems ; Mathematical analysis ; Reduction</subject><ispartof>arXiv.org, 2010-04</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087545056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Malesevic, Branko</creatorcontrib><creatorcontrib>Todoric, Dragana</creatorcontrib><creatorcontrib>Jovovic, Ivana</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><title>arXiv.org</title><description>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</description><subject>Canonical forms</subject><subject>Linear operators</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Reduction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy8EKgkAUheEhCJLyHS60FqbRUfehtAgMay9DjjCijt47s-jtU-gBWp3F_50dC0QcX6I8EeLAQqKecy7STEgZB6wuLY5-UBpsBw-FzqgBat36tzN2gs4i3M2kFcLzQ06PtLnSIDmosNUI1axRuZUVi1fbh05s36mBdPjbIzuXxet6i2a0i9fkmt56nNbUCJ5nMpFcpvF_6gvP2D-N</recordid><startdate>20100421</startdate><enddate>20100421</enddate><creator>Malesevic, Branko</creator><creator>Todoric, Dragana</creator><creator>Jovovic, Ivana</creator><creator>Telebakovic, Sonja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100421</creationdate><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><author>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20875450563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Canonical forms</topic><topic>Linear operators</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Malesevic, Branko</creatorcontrib><creatorcontrib>Todoric, Dragana</creatorcontrib><creatorcontrib>Jovovic, Ivana</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malesevic, Branko</au><au>Todoric, Dragana</au><au>Jovovic, Ivana</au><au>Telebakovic, Sonja</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</atitle><jtitle>arXiv.org</jtitle><date>2010-04-21</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087545056 |
source | ProQuest - Publicly Available Content Database |
subjects | Canonical forms Linear operators Linear systems Mathematical analysis Reduction |
title | Formulae of Partial Reduction for Linear Systems of First Order Operator Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Formulae%20of%20Partial%20Reduction%20for%20Linear%20Systems%20of%20First%20Order%20Operator%20Equations&rft.jtitle=arXiv.org&rft.au=Malesevic,%20Branko&rft.date=2010-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087545056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20875450563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087545056&rft_id=info:pmid/&rfr_iscdi=true |