Loading…

Formulae of Partial Reduction for Linear Systems of First Order Operator Equations

This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is o...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-04
Main Authors: Malesevic, Branko, Todoric, Dragana, Jovovic, Ivana, Telebakovic, Sonja
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Malesevic, Branko
Todoric, Dragana
Jovovic, Ivana
Telebakovic, Sonja
description This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087545056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087545056</sourcerecordid><originalsourceid>FETCH-proquest_journals_20875450563</originalsourceid><addsrcrecordid>eNqNy8EKgkAUheEhCJLyHS60FqbRUfehtAgMay9DjjCijt47s-jtU-gBWp3F_50dC0QcX6I8EeLAQqKecy7STEgZB6wuLY5-UBpsBw-FzqgBat36tzN2gs4i3M2kFcLzQ06PtLnSIDmosNUI1axRuZUVi1fbh05s36mBdPjbIzuXxet6i2a0i9fkmt56nNbUCJ5nMpFcpvF_6gvP2D-N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087545056</pqid></control><display><type>article</type><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><source>ProQuest - Publicly Available Content Database</source><creator>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</creator><creatorcontrib>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</creatorcontrib><description>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Canonical forms ; Linear operators ; Linear systems ; Mathematical analysis ; Reduction</subject><ispartof>arXiv.org, 2010-04</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087545056?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Malesevic, Branko</creatorcontrib><creatorcontrib>Todoric, Dragana</creatorcontrib><creatorcontrib>Jovovic, Ivana</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><title>arXiv.org</title><description>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</description><subject>Canonical forms</subject><subject>Linear operators</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Reduction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy8EKgkAUheEhCJLyHS60FqbRUfehtAgMay9DjjCijt47s-jtU-gBWp3F_50dC0QcX6I8EeLAQqKecy7STEgZB6wuLY5-UBpsBw-FzqgBat36tzN2gs4i3M2kFcLzQ06PtLnSIDmosNUI1axRuZUVi1fbh05s36mBdPjbIzuXxet6i2a0i9fkmt56nNbUCJ5nMpFcpvF_6gvP2D-N</recordid><startdate>20100421</startdate><enddate>20100421</enddate><creator>Malesevic, Branko</creator><creator>Todoric, Dragana</creator><creator>Jovovic, Ivana</creator><creator>Telebakovic, Sonja</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100421</creationdate><title>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</title><author>Malesevic, Branko ; Todoric, Dragana ; Jovovic, Ivana ; Telebakovic, Sonja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20875450563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Canonical forms</topic><topic>Linear operators</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Malesevic, Branko</creatorcontrib><creatorcontrib>Todoric, Dragana</creatorcontrib><creatorcontrib>Jovovic, Ivana</creatorcontrib><creatorcontrib>Telebakovic, Sonja</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malesevic, Branko</au><au>Todoric, Dragana</au><au>Jovovic, Ivana</au><au>Telebakovic, Sonja</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Formulae of Partial Reduction for Linear Systems of First Order Operator Equations</atitle><jtitle>arXiv.org</jtitle><date>2010-04-21</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>This paper deals with reduction of non-homogeneous linear systems of first order operator equations with constant coefficients. An equivalent reduced system, consisting of higher order linear operator equations having only one variable and first order linear operator equations in two variables, is obtained by using the rational canonical form.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087545056
source ProQuest - Publicly Available Content Database
subjects Canonical forms
Linear operators
Linear systems
Mathematical analysis
Reduction
title Formulae of Partial Reduction for Linear Systems of First Order Operator Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Formulae%20of%20Partial%20Reduction%20for%20Linear%20Systems%20of%20First%20Order%20Operator%20Equations&rft.jtitle=arXiv.org&rft.au=Malesevic,%20Branko&rft.date=2010-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087545056%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20875450563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087545056&rft_id=info:pmid/&rfr_iscdi=true