Loading…
Subsampled STEM-ptychography
Ptychography has been shown to be an efficient phase contrast imaging technique for scanning transmission electron microscopes (STEM). STEM-ptychography uses a fast pixelated detector to collect a “4-dimensional” dataset consisting of a 2D electron diffraction pattern at every probe position of a 2D...
Saved in:
Published in: | Applied physics letters 2018-07, Vol.113 (3) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ptychography has been shown to be an efficient phase contrast imaging technique for scanning transmission electron microscopes (STEM). STEM-ptychography uses a fast pixelated detector to collect a “4-dimensional” dataset consisting of a 2D electron diffraction pattern at every probe position of a 2D raster-scan. This 4D dataset can be used to recover the phase-image. Current camera technology, unfortunately, can only achieve a frame rate of a few thousand detector frames-per-second (fps), which means that the acquisition time of the 4D dataset is up to 1000× slower than the scanning speed in a conventional STEM, thereby limiting the potential applications of this method for dose-fragile and dynamic specimens. In this letter, we demonstrate that subsampling provides an effective method for optimizing ptychographic acquisition by reducing both the number of detector-pixels and the number of probe positions. Subsampling and recovery of the 4D dataset are shown using an experimental 4D dataset with randomly removed detector-pixels and probe positions. After compressive sensing recovery, Wigner distribution deconvolution is applied to obtain phase-images. Randomly sampling both the probe positions and the detector at 10% gives sufficient information for phase-retrieval and reduces acquisition time by 100×, thereby making STEM-ptychography competitive with conventional STEM. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.5040496 |