Loading…
On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups
In this article we show that if \({\cal V}\) is the variety of polynilpotent groups of class row \((c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}\), and \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} }\) is the \(n\)...
Saved in:
Published in: | arXiv.org 2010-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mashayekhy, Behrooz Mohammadzadeh, Fahimeh |
description | In this article we show that if \({\cal V}\) is the variety of polynilpotent groups of class row \((c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}\), and \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} }\) is the \(n\)th nilpotent product of some cyclic \(p\)-groups, where \(c_1\geq n\), \(\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t \) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n\), then \(|{\mathcal N}_{c_1,c_2,...,c_s}M(G)|=p^{d_m}\) if and only if \(G\cong{\bf {Z}}_{p}\stackrel{n}{*}{\bf {Z}}_{p}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p }\) (\(m\)-copies), where \(m=\sum _{i=1}^t \alpha_i\) and \(d_m=\chi_{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}^n \chi_{c_1+j}(m)))...)\). Also, we extend the result to the multiple nilpotent product \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n_1}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n_{t-1}}{*}{\bf{Z}}_{p^{\alpha_t} }\), where \(c_1\geq n_1\geq...\geq n_{t-1}\). Finally a similar result is given for the \(c\)-nilpotent multiplier of \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t}}\) with the different conditions \(n \geq c\) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n+c.\) |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087614286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087614286</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876142863</originalsourceid><addsrcrecordid>eNqNyrsKwjAYQOEgCBbtOwRcdCikSW978bJoC7pZKNKmmBL7x1yGvr0XxNnpDN-ZII8yFgZZROkM-cb0hBCapDSOmYcuxYDtjeNCt1xj6HAJchyEVGD5YPHBSSuUFFybN57gzvHxp6WG1jX2Q_nYSNHgaqWqdbDT4JRZoGl3lYb7387Rcrs55_tAaXg4bmzdg9PDi2pKsjQJI5ol7L_rCSwuQm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087614286</pqid></control><display><type>article</type><title>On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups</title><source>Publicly Available Content Database</source><creator>Mashayekhy, Behrooz ; Mohammadzadeh, Fahimeh</creator><creatorcontrib>Mashayekhy, Behrooz ; Mohammadzadeh, Fahimeh</creatorcontrib><description>In this article we show that if \({\cal V}\) is the variety of polynilpotent groups of class row \((c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}\), and \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} }\) is the \(n\)th nilpotent product of some cyclic \(p\)-groups, where \(c_1\geq n\), \(\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t \) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n\), then \(|{\mathcal N}_{c_1,c_2,...,c_s}M(G)|=p^{d_m}\) if and only if \(G\cong{\bf {Z}}_{p}\stackrel{n}{*}{\bf {Z}}_{p}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p }\) (\(m\)-copies), where \(m=\sum _{i=1}^t \alpha_i\) and \(d_m=\chi_{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}^n \chi_{c_1+j}(m)))...)\). Also, we extend the result to the multiple nilpotent product \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n_1}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n_{t-1}}{*}{\bf{Z}}_{p^{\alpha_t} }\), where \(c_1\geq n_1\geq...\geq n_{t-1}\). Finally a similar result is given for the \(c\)-nilpotent multiplier of \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t}}\) with the different conditions \(n \geq c\) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n+c.\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multipliers</subject><ispartof>arXiv.org, 2010-11</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087614286?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mashayekhy, Behrooz</creatorcontrib><creatorcontrib>Mohammadzadeh, Fahimeh</creatorcontrib><title>On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups</title><title>arXiv.org</title><description>In this article we show that if \({\cal V}\) is the variety of polynilpotent groups of class row \((c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}\), and \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} }\) is the \(n\)th nilpotent product of some cyclic \(p\)-groups, where \(c_1\geq n\), \(\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t \) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n\), then \(|{\mathcal N}_{c_1,c_2,...,c_s}M(G)|=p^{d_m}\) if and only if \(G\cong{\bf {Z}}_{p}\stackrel{n}{*}{\bf {Z}}_{p}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p }\) (\(m\)-copies), where \(m=\sum _{i=1}^t \alpha_i\) and \(d_m=\chi_{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}^n \chi_{c_1+j}(m)))...)\). Also, we extend the result to the multiple nilpotent product \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n_1}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n_{t-1}}{*}{\bf{Z}}_{p^{\alpha_t} }\), where \(c_1\geq n_1\geq...\geq n_{t-1}\). Finally a similar result is given for the \(c\)-nilpotent multiplier of \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t}}\) with the different conditions \(n \geq c\) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n+c.\)</description><subject>Multipliers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrsKwjAYQOEgCBbtOwRcdCikSW978bJoC7pZKNKmmBL7x1yGvr0XxNnpDN-ZII8yFgZZROkM-cb0hBCapDSOmYcuxYDtjeNCt1xj6HAJchyEVGD5YPHBSSuUFFybN57gzvHxp6WG1jX2Q_nYSNHgaqWqdbDT4JRZoGl3lYb7387Rcrs55_tAaXg4bmzdg9PDi2pKsjQJI5ol7L_rCSwuQm4</recordid><startdate>20101126</startdate><enddate>20101126</enddate><creator>Mashayekhy, Behrooz</creator><creator>Mohammadzadeh, Fahimeh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20101126</creationdate><title>On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups</title><author>Mashayekhy, Behrooz ; Mohammadzadeh, Fahimeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876142863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Multipliers</topic><toplevel>online_resources</toplevel><creatorcontrib>Mashayekhy, Behrooz</creatorcontrib><creatorcontrib>Mohammadzadeh, Fahimeh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mashayekhy, Behrooz</au><au>Mohammadzadeh, Fahimeh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups</atitle><jtitle>arXiv.org</jtitle><date>2010-11-26</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>In this article we show that if \({\cal V}\) is the variety of polynilpotent groups of class row \((c_1,c_2,...,c_s),\ {\mathcal N}_{c_1,c_2,...,c_s}\), and \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t} }\) is the \(n\)th nilpotent product of some cyclic \(p\)-groups, where \(c_1\geq n\), \(\alpha_1 \geq \alpha_2 \geq...\geq \alpha_t \) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n\), then \(|{\mathcal N}_{c_1,c_2,...,c_s}M(G)|=p^{d_m}\) if and only if \(G\cong{\bf {Z}}_{p}\stackrel{n}{*}{\bf {Z}}_{p}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p }\) (\(m\)-copies), where \(m=\sum _{i=1}^t \alpha_i\) and \(d_m=\chi_{c_s+1}(...(\chi_{c_2+1}(\sum_{j=1}^n \chi_{c_1+j}(m)))...)\). Also, we extend the result to the multiple nilpotent product \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n_1}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n_2}{*}...\stackrel{n_{t-1}}{*}{\bf{Z}}_{p^{\alpha_t} }\), where \(c_1\geq n_1\geq...\geq n_{t-1}\). Finally a similar result is given for the \(c\)-nilpotent multiplier of \(G\cong{\bf {Z}}_{p^{\alpha_1}}\stackrel{n}{*}{\bf {Z}}_{p^{\alpha_2}}\stackrel{n}{*}...\stackrel{n}{*}{\bf{Z}}_{p^{\alpha_t}}\) with the different conditions \(n \geq c\) and \( (q,p)=1\) for all primes \(q\) less than or equal to \(n+c.\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087614286 |
source | Publicly Available Content Database |
subjects | Multipliers |
title | On the Order of Polynilpotent Multipliers of Some Nilpotent Products of Cyclic \(p\)-Groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A58%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Order%20of%20Polynilpotent%20Multipliers%20of%20Some%20Nilpotent%20Products%20of%20Cyclic%20%5C(p%5C)-Groups&rft.jtitle=arXiv.org&rft.au=Mashayekhy,%20Behrooz&rft.date=2010-11-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087614286%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20876142863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087614286&rft_id=info:pmid/&rfr_iscdi=true |