Loading…
The time-dependent Schroedinger equation, Riccati equation and Airy functions
We construct the Green functions (or Feynman's propagators) for the Schroedinger equations of the form \(i\psi_{t}+{1/4}\psi_{xx}\pm tx^{2}\psi =0\) in terms of Airy functions and solve the Cauchy initial value problem in the coordinate and momentum representations. Particular solutions of the...
Saved in:
Published in: | arXiv.org 2009-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lanfear, Nathan Suslov, Sergei K |
description | We construct the Green functions (or Feynman's propagators) for the Schroedinger equations of the form \(i\psi_{t}+{1/4}\psi_{xx}\pm tx^{2}\psi =0\) in terms of Airy functions and solve the Cauchy initial value problem in the coordinate and momentum representations. Particular solutions of the corresponding nonlinear Schroedinger equations with variable coefficients are also found. A special case of the quantum parametric oscillator is studied in detail first. The Green function is explicitly given in terms of Airy functions and the corresponding transition amplitudes are found in terms of a hypergeometric function. The general case of quantum parametric oscillator is considered then in a similar fashion. A group theoretical meaning of the transition amplitudes and their relation with Bargmann's functions is stablished. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087674657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087674657</sourcerecordid><originalsourceid>FETCH-proquest_journals_20876746573</originalsourceid><addsrcrecordid>eNqNir0KwjAURoMgWLTvEHC1EJO26SqiuLhodynJrU3RmzY_g29vBXF2Oh_nOzOScCG2WZVzviCp9z1jjJeSF4VIyLnugAbzhEzDAKgBA72qzlnQBu_gKIyxCcbihl6MUtP8GdqgpjvjXrSNqD7Gr8i8bR4e0i-XZH081PtTNjg7RvDh1tvocLpunFWylHlZSPFf9Qaprz4j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087674657</pqid></control><display><type>article</type><title>The time-dependent Schroedinger equation, Riccati equation and Airy functions</title><source>Publicly Available Content (ProQuest)</source><creator>Lanfear, Nathan ; Suslov, Sergei K</creator><creatorcontrib>Lanfear, Nathan ; Suslov, Sergei K</creatorcontrib><description>We construct the Green functions (or Feynman's propagators) for the Schroedinger equations of the form \(i\psi_{t}+{1/4}\psi_{xx}\pm tx^{2}\psi =0\) in terms of Airy functions and solve the Cauchy initial value problem in the coordinate and momentum representations. Particular solutions of the corresponding nonlinear Schroedinger equations with variable coefficients are also found. A special case of the quantum parametric oscillator is studied in detail first. The Green function is explicitly given in terms of Airy functions and the corresponding transition amplitudes are found in terms of a hypergeometric function. The general case of quantum parametric oscillator is considered then in a similar fashion. A group theoretical meaning of the transition amplitudes and their relation with Bargmann's functions is stablished.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplitudes ; Boundary value problems ; Green's functions ; Hypergeometric functions ; Mathematical analysis ; Nonlinear equations ; Parametric amplifiers ; Riccati equation ; Schrodinger equation ; Time dependence</subject><ispartof>arXiv.org, 2009-04</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087674657?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Lanfear, Nathan</creatorcontrib><creatorcontrib>Suslov, Sergei K</creatorcontrib><title>The time-dependent Schroedinger equation, Riccati equation and Airy functions</title><title>arXiv.org</title><description>We construct the Green functions (or Feynman's propagators) for the Schroedinger equations of the form \(i\psi_{t}+{1/4}\psi_{xx}\pm tx^{2}\psi =0\) in terms of Airy functions and solve the Cauchy initial value problem in the coordinate and momentum representations. Particular solutions of the corresponding nonlinear Schroedinger equations with variable coefficients are also found. A special case of the quantum parametric oscillator is studied in detail first. The Green function is explicitly given in terms of Airy functions and the corresponding transition amplitudes are found in terms of a hypergeometric function. The general case of quantum parametric oscillator is considered then in a similar fashion. A group theoretical meaning of the transition amplitudes and their relation with Bargmann's functions is stablished.</description><subject>Amplitudes</subject><subject>Boundary value problems</subject><subject>Green's functions</subject><subject>Hypergeometric functions</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Parametric amplifiers</subject><subject>Riccati equation</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNir0KwjAURoMgWLTvEHC1EJO26SqiuLhodynJrU3RmzY_g29vBXF2Oh_nOzOScCG2WZVzviCp9z1jjJeSF4VIyLnugAbzhEzDAKgBA72qzlnQBu_gKIyxCcbihl6MUtP8GdqgpjvjXrSNqD7Gr8i8bR4e0i-XZH081PtTNjg7RvDh1tvocLpunFWylHlZSPFf9Qaprz4j</recordid><startdate>20090422</startdate><enddate>20090422</enddate><creator>Lanfear, Nathan</creator><creator>Suslov, Sergei K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090422</creationdate><title>The time-dependent Schroedinger equation, Riccati equation and Airy functions</title><author>Lanfear, Nathan ; Suslov, Sergei K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20876746573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amplitudes</topic><topic>Boundary value problems</topic><topic>Green's functions</topic><topic>Hypergeometric functions</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Parametric amplifiers</topic><topic>Riccati equation</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Lanfear, Nathan</creatorcontrib><creatorcontrib>Suslov, Sergei K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanfear, Nathan</au><au>Suslov, Sergei K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The time-dependent Schroedinger equation, Riccati equation and Airy functions</atitle><jtitle>arXiv.org</jtitle><date>2009-04-22</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We construct the Green functions (or Feynman's propagators) for the Schroedinger equations of the form \(i\psi_{t}+{1/4}\psi_{xx}\pm tx^{2}\psi =0\) in terms of Airy functions and solve the Cauchy initial value problem in the coordinate and momentum representations. Particular solutions of the corresponding nonlinear Schroedinger equations with variable coefficients are also found. A special case of the quantum parametric oscillator is studied in detail first. The Green function is explicitly given in terms of Airy functions and the corresponding transition amplitudes are found in terms of a hypergeometric function. The general case of quantum parametric oscillator is considered then in a similar fashion. A group theoretical meaning of the transition amplitudes and their relation with Bargmann's functions is stablished.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087674657 |
source | Publicly Available Content (ProQuest) |
subjects | Amplitudes Boundary value problems Green's functions Hypergeometric functions Mathematical analysis Nonlinear equations Parametric amplifiers Riccati equation Schrodinger equation Time dependence |
title | The time-dependent Schroedinger equation, Riccati equation and Airy functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20time-dependent%20Schroedinger%20equation,%20Riccati%20equation%20and%20Airy%20functions&rft.jtitle=arXiv.org&rft.au=Lanfear,%20Nathan&rft.date=2009-04-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087674657%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20876746573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087674657&rft_id=info:pmid/&rfr_iscdi=true |