Loading…
Torsion Discovery Potential and Its Discrimination at CERN LHC
Torsion models constitute a well known class of extended quantum gravity models. In this paper we study some phenomenological consequences of a torsion field interacting with fermions at LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. These...
Saved in:
Published in: | arXiv.org 2008-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Torsion models constitute a well known class of extended quantum gravity models. In this paper we study some phenomenological consequences of a torsion field interacting with fermions at LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. These new states will form a resonance decaying into difermions, as occurs in many extensions of the Standard Model, such as models predicting the existence of additional neutral gauge bosons, usually named \(Z^\prime\). Using the dielectron channel we evaluate the integrated luminosity needed for a \(5\sigma\) discovery as a function of the torsion mass, for different coupling values. We also calculate the luminosity needed for discriminate, with 95% C.L., the two possible different torsion natures. Finally, we show that the observed signal coming from the torsion field could be distinguished from a signal coming from a new neutral gauge boson, provided there is enough luminosity. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0811.0291 |