Loading…
Unsupervised Learning of Morphology without Morphemes
The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to disco...
Saved in:
Published in: | arXiv.org 2002-05 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Neuvel, Sylvain Fulop, Sean A |
description | The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087990059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087990059</sourcerecordid><originalsourceid>FETCH-proquest_journals_20879900593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDc0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_DNLyrIyM_JT69UKM8sycgvLYEIpeamFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5paWBgamlMXGqAOpKNcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087990059</pqid></control><display><type>article</type><title>Unsupervised Learning of Morphology without Morphemes</title><source>Publicly Available Content (ProQuest)</source><creator>Neuvel, Sylvain ; Fulop, Sean A</creator><creatorcontrib>Neuvel, Sylvain ; Fulop, Sean A</creatorcontrib><description>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Morphology ; Unsupervised learning</subject><ispartof>arXiv.org, 2002-05</ispartof><rights>2002. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087990059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Neuvel, Sylvain</creatorcontrib><creatorcontrib>Fulop, Sean A</creatorcontrib><title>Unsupervised Learning of Morphology without Morphemes</title><title>arXiv.org</title><description>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</description><subject>Morphology</subject><subject>Unsupervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDc0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_DNLyrIyM_JT69UKM8sycgvLYEIpeamFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5paWBgamlMXGqAOpKNcI</recordid><startdate>20020529</startdate><enddate>20020529</enddate><creator>Neuvel, Sylvain</creator><creator>Fulop, Sean A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20020529</creationdate><title>Unsupervised Learning of Morphology without Morphemes</title><author>Neuvel, Sylvain ; Fulop, Sean A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20879900593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Morphology</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Neuvel, Sylvain</creatorcontrib><creatorcontrib>Fulop, Sean A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neuvel, Sylvain</au><au>Fulop, Sean A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Learning of Morphology without Morphemes</atitle><jtitle>arXiv.org</jtitle><date>2002-05-29</date><risdate>2002</risdate><eissn>2331-8422</eissn><abstract>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2002-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2087990059 |
source | Publicly Available Content (ProQuest) |
subjects | Morphology Unsupervised learning |
title | Unsupervised Learning of Morphology without Morphemes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Learning%20of%20Morphology%20without%20Morphemes&rft.jtitle=arXiv.org&rft.au=Neuvel,%20Sylvain&rft.date=2002-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087990059%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20879900593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087990059&rft_id=info:pmid/&rfr_iscdi=true |