Loading…

Unsupervised Learning of Morphology without Morphemes

The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to disco...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2002-05
Main Authors: Neuvel, Sylvain, Fulop, Sean A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Neuvel, Sylvain
Fulop, Sean A
description The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2087990059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087990059</sourcerecordid><originalsourceid>FETCH-proquest_journals_20879900593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDc0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_DNLyrIyM_JT69UKM8sycgvLYEIpeamFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5paWBgamlMXGqAOpKNcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087990059</pqid></control><display><type>article</type><title>Unsupervised Learning of Morphology without Morphemes</title><source>Publicly Available Content (ProQuest)</source><creator>Neuvel, Sylvain ; Fulop, Sean A</creator><creatorcontrib>Neuvel, Sylvain ; Fulop, Sean A</creatorcontrib><description>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Morphology ; Unsupervised learning</subject><ispartof>arXiv.org, 2002-05</ispartof><rights>2002. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2087990059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Neuvel, Sylvain</creatorcontrib><creatorcontrib>Fulop, Sean A</creatorcontrib><title>Unsupervised Learning of Morphology without Morphemes</title><title>arXiv.org</title><description>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</description><subject>Morphology</subject><subject>Unsupervised learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDc0rLi1ILSrLLE5NUfBJTSzKy8xLV8hPU_DNLyrIyM_JT69UKM8sycgvLYEIpeamFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgYW5paWBgamlMXGqAOpKNcI</recordid><startdate>20020529</startdate><enddate>20020529</enddate><creator>Neuvel, Sylvain</creator><creator>Fulop, Sean A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20020529</creationdate><title>Unsupervised Learning of Morphology without Morphemes</title><author>Neuvel, Sylvain ; Fulop, Sean A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20879900593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Morphology</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Neuvel, Sylvain</creatorcontrib><creatorcontrib>Fulop, Sean A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neuvel, Sylvain</au><au>Fulop, Sean A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unsupervised Learning of Morphology without Morphemes</atitle><jtitle>arXiv.org</jtitle><date>2002-05-29</date><risdate>2002</risdate><eissn>2331-8422</eissn><abstract>The first morphological learner based upon the theory of Whole Word Morphology Ford et al. (1997) is outlined, and preliminary evaluation results are presented. The program, Whole Word Morphologizer, takes a POS-tagged lexicon as input, induces morphological relationships without attempting to discover or identify morphemes, and is then able to generate new words beyond the learning sample. The accuracy (precision) of the generated new words is as high as 80% using the pure Whole Word theory, and 92% after a post-hoc adjustment is added to the routine.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2002-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2087990059
source Publicly Available Content (ProQuest)
subjects Morphology
Unsupervised learning
title Unsupervised Learning of Morphology without Morphemes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unsupervised%20Learning%20of%20Morphology%20without%20Morphemes&rft.jtitle=arXiv.org&rft.au=Neuvel,%20Sylvain&rft.date=2002-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2087990059%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20879900593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2087990059&rft_id=info:pmid/&rfr_iscdi=true