Loading…

Dust in Spiral Galaxies: Comparing Emission and Absorption to Constrain Small-Scale and Very Cold Structures

The detailed distribution of dust in the disks of spiral galaxies is important to understanding the radiative transfer within disks, and to measuring overall dust masses if significant quantities of dust are either very opaque or very cold. We address this issue by comparing measures of dust absorpt...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1999-06
Main Authors: Domingue, Donovan L, Keel, William C, Ryder, Stuart D, White, Raymond E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The detailed distribution of dust in the disks of spiral galaxies is important to understanding the radiative transfer within disks, and to measuring overall dust masses if significant quantities of dust are either very opaque or very cold. We address this issue by comparing measures of dust absorption, using the galaxy-overlap technique in the optical, with measures of the dust grains' thermal emission from 50-2000 micron using ISOPHOT on board ISO and SCUBA at the JCMT. We examine three spiral galaxies projected partially in front of E/S0 galaxies --- AM1316-241, NGC 5545, and NGC 5091 (for NGC 5091 we have only optical and ISO data). Adopting an empirical exponential model for the dust distribution, we compare column densities and dust masses derived from the absorption and emission techniques. This comparison is sensitive to the amount of dust mass in small, opaque structures, which would not contribute strongly to area-weighted absorption measures, and to very cold dust, which would contribute to optical absorption but provide only a small fraction of the sub-mm emission. In AM1316-241, we find global dust masses of 2-5 x 10^7 M_solar, both techniques agreeing at the 50% level. NGC 5545 has about half this dust mass. The concordance of dust masses is well within the errors expected from our knowledge of the radial distribution of dust, and argues against any dominant part of the dust mass being so cold or opaque. The 50-2000 micron data are well fitted by modified Planck functions with an emissivity law beta=-2, at 21 +/- 2 K. We also present 12 micron ISOCAM observations of these pairs.Comparison of H-alpha and 12 micron images of NGC 5545 indicate that ISOCAM images are reliable tracers of star formation.
ISSN:2331-8422
DOI:10.48550/arxiv.9906281