Loading…

HST Imaging of the Host Galaxies of High Redshift Radio-Loud Quasars

We present rest-frame UV and Ly-alpha images of spatially-resolved structures around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope. We find that all five quasars are extended and this "fuzz" contains ~5-40% of the total continuum flux an...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1999-04
Main Authors: Lehnert, Matthew D, Wil J M van Breugel, Heckman, Timothy M, Miley, George K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present rest-frame UV and Ly-alpha images of spatially-resolved structures around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope. We find that all five quasars are extended and this "fuzz" contains ~5-40% of the total continuum flux and 15-65% of the Ly-alpha flux within a radius of about 1.5 arcsec. The rest-frame UV luminosities of the hosts are log lambda P_lambda = 11.9 to 12.5 solar luminosities (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low redshift starburst galaxies. The Ly-alpha luminosities of the hosts are (in the log) approximately 44.3-44.9 erg/s which are also similar to the those of luminous high redshift radio galaxies and considerably larger than the Ly-alpha luminosities of high redshift field galaxies. To generate the Ly-alpha luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. We find good alignment between the extended Ly-alpha and the radio sources, strong evidence for jet-cloud interactions in two cases, again resembling radio galaxies, and what is possibly the most luminous radio-UV synchrotron jet in one of the hosts at z=2.110.
ISSN:2331-8422
DOI:10.48550/arxiv.9904114