Loading…

An X-Ray Microlensing Test of AU-Scale Accretion Disk Structure in Q2237+0305

The innermost regions of quasars can be resolved by a gravitational-lens {\lq}telescope{\rq} on scales down to a few AU. For the purpose, X-ray observations are most preferable, because X-rays originating from the innermost regions, can be selectively amplified by microlensing due to the so-called `...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 1998-04
Main Authors: Yonehara, Atsunori, Shin Mineshige, Manmoto, Tadahiro, Fukue, Jun, Umemura, Masayuki, Turner, Edwin L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The innermost regions of quasars can be resolved by a gravitational-lens {\lq}telescope{\rq} on scales down to a few AU. For the purpose, X-ray observations are most preferable, because X-rays originating from the innermost regions, can be selectively amplified by microlensing due to the so-called `caustic crossing'. If detected, X-ray variations will constrain the size of the X-ray emitting region down to a few AU. The maximum attainable resolution depends mainly on the monitoring intervals of lens events, which should be much shorter than the crossing time. On the basis of this idea, we performe numerical simulations of microlensing of an optically-thick, standard-type disk as well as an optically-thin, advection-dominated accretion flow (ADAF). Calculated spectral variations and light curves show distinct behaviors, depending on the photon energy. X-ray radiation which is produced in optically thin region, exhibits intensity variation over a few tens of days. In contrast, optical-UV fluxes, which are likely to come from optically thick region, exhibit more gradual light changes, which is consistent with the microlensing events so far observed in Q2237+0305. Currently, Q2237+0305 is being monitored in the optical range at Apache Point Observatory. Simultaneous multi-wavelength observations by X-ray sattelites (e.g., ASCA, AXAF, XMM) as well as HST at the moment of a microlens event enable us to reveal an AU scale structure of the central accretion disk around black hole.
ISSN:2331-8422
DOI:10.48550/arxiv.9804251