Loading…
Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection
In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adop...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2018-09, Vol.22 (5), p.1434-1444 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83 |
container_end_page | 1444 |
container_issue | 5 |
container_start_page | 1434 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 22 |
creator | Liu, Wenhan Zhang, Mengxin Zhang, Yidan Liao, Yuan Huang, Qijun Chang, Sheng Wang, Hao He, Jin |
description | In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications. |
doi_str_mv | 10.1109/JBHI.2017.2771768 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088095252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8103330</ieee_id><sourcerecordid>2088095252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn9ASJIwIuX1J3dZLN71PrRSqsg9Rw2yQRS02zdJEr_vZt-HZzLO8w888K8hFwCHQFQdff6MJmOGIVoxKIIIiFPSJ-BkD5jVJ4eelBBjwzrekldSTdS4pz0mFKKggj6ZPGBuvQXxQq9eVs2RYk688am-jFl2xSm0qX3hq3dSvNr7JeXG-vNNybVNivceFrl2qYd6j1ig9vugpzluqxxuNcB-Xx-Wown_uz9ZTq-n_kpD1Tjs0BkeY6ZylgUpmGYBBo45TTgVCc8Y4AQhVwkTFBIuY7cNlWO4k4kaMkH5Hbnu7bmu8W6iVdFnWJZ6gpNW8eMCskDASp06M0_dGla697rKCmpClnIHAU7KrWmri3m8doWK203MdC4Sz3uUo-71ON96u7meu_cJivMjheHjB1wtQMKRDyuJVDO3bd_3gSETA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088095252</pqid></control><display><type>article</type><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</creator><creatorcontrib>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</creatorcontrib><description>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2771768</identifier><identifier>PMID: 29990164</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial neural networks ; Convolution ; Convolutional neural network (CNN) ; Diagnostic systems ; Echocardiography ; EKG ; electrocardiogram (ECG) ; Electrocardiography ; Granulation ; Health care ; Heart ; Heart attacks ; lead asymmetric pooling (LAP) ; Medical services ; Mobile communication ; Myocardial infarction ; Myocardial Infarction (MI) ; Myocardium ; Neural networks ; Real time ; real-time application ; Real-time systems ; Segmentation ; sub 2-D convolution ; Two dimensional models</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-09, Vol.22 (5), p.1434-1444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</citedby><cites>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</cites><orcidid>0000-0002-8747-0472 ; 0000-0003-4875-5501 ; 0000-0002-0920-6908 ; 0000-0001-9679-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8103330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29990164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Mengxin</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liao, Yuan</creatorcontrib><creatorcontrib>Huang, Qijun</creatorcontrib><creatorcontrib>Chang, Sheng</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Convolutional neural network (CNN)</subject><subject>Diagnostic systems</subject><subject>Echocardiography</subject><subject>EKG</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Granulation</subject><subject>Health care</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>lead asymmetric pooling (LAP)</subject><subject>Medical services</subject><subject>Mobile communication</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction (MI)</subject><subject>Myocardium</subject><subject>Neural networks</subject><subject>Real time</subject><subject>real-time application</subject><subject>Real-time systems</subject><subject>Segmentation</subject><subject>sub 2-D convolution</subject><subject>Two dimensional models</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbKn9ASJIwIuX1J3dZLN71PrRSqsg9Rw2yQRS02zdJEr_vZt-HZzLO8w888K8hFwCHQFQdff6MJmOGIVoxKIIIiFPSJ-BkD5jVJ4eelBBjwzrekldSTdS4pz0mFKKggj6ZPGBuvQXxQq9eVs2RYk688am-jFl2xSm0qX3hq3dSvNr7JeXG-vNNybVNivceFrl2qYd6j1ig9vugpzluqxxuNcB-Xx-Wown_uz9ZTq-n_kpD1Tjs0BkeY6ZylgUpmGYBBo45TTgVCc8Y4AQhVwkTFBIuY7cNlWO4k4kaMkH5Hbnu7bmu8W6iVdFnWJZ6gpNW8eMCskDASp06M0_dGla697rKCmpClnIHAU7KrWmri3m8doWK203MdC4Sz3uUo-71ON96u7meu_cJivMjheHjB1wtQMKRDyuJVDO3bd_3gSETA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Liu, Wenhan</creator><creator>Zhang, Mengxin</creator><creator>Zhang, Yidan</creator><creator>Liao, Yuan</creator><creator>Huang, Qijun</creator><creator>Chang, Sheng</creator><creator>Wang, Hao</creator><creator>He, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8747-0472</orcidid><orcidid>https://orcid.org/0000-0003-4875-5501</orcidid><orcidid>https://orcid.org/0000-0002-0920-6908</orcidid><orcidid>https://orcid.org/0000-0001-9679-5191</orcidid></search><sort><creationdate>201809</creationdate><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><author>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Convolutional neural network (CNN)</topic><topic>Diagnostic systems</topic><topic>Echocardiography</topic><topic>EKG</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Granulation</topic><topic>Health care</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>lead asymmetric pooling (LAP)</topic><topic>Medical services</topic><topic>Mobile communication</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction (MI)</topic><topic>Myocardium</topic><topic>Neural networks</topic><topic>Real time</topic><topic>real-time application</topic><topic>Real-time systems</topic><topic>Segmentation</topic><topic>sub 2-D convolution</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Mengxin</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liao, Yuan</creatorcontrib><creatorcontrib>Huang, Qijun</creatorcontrib><creatorcontrib>Chang, Sheng</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenhan</au><au>Zhang, Mengxin</au><au>Zhang, Yidan</au><au>Liao, Yuan</au><au>Huang, Qijun</au><au>Chang, Sheng</au><au>Wang, Hao</au><au>He, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-09</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1434</spage><epage>1444</epage><pages>1434-1444</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29990164</pmid><doi>10.1109/JBHI.2017.2771768</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8747-0472</orcidid><orcidid>https://orcid.org/0000-0003-4875-5501</orcidid><orcidid>https://orcid.org/0000-0002-0920-6908</orcidid><orcidid>https://orcid.org/0000-0001-9679-5191</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2018-09, Vol.22 (5), p.1434-1444 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2088095252 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithm design and analysis Algorithms Artificial neural networks Convolution Convolutional neural network (CNN) Diagnostic systems Echocardiography EKG electrocardiogram (ECG) Electrocardiography Granulation Health care Heart Heart attacks lead asymmetric pooling (LAP) Medical services Mobile communication Myocardial infarction Myocardial Infarction (MI) Myocardium Neural networks Real time real-time application Real-time systems Segmentation sub 2-D convolution Two dimensional models |
title | Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Multilead%20Convolutional%20Neural%20Network%20for%20Myocardial%20Infarction%20Detection&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liu,%20Wenhan&rft.date=2018-09&rft.volume=22&rft.issue=5&rft.spage=1434&rft.epage=1444&rft.pages=1434-1444&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2771768&rft_dat=%3Cproquest_cross%3E2088095252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088095252&rft_id=info:pmid/29990164&rft_ieee_id=8103330&rfr_iscdi=true |