Loading…

Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection

In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adop...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2018-09, Vol.22 (5), p.1434-1444
Main Authors: Liu, Wenhan, Zhang, Mengxin, Zhang, Yidan, Liao, Yuan, Huang, Qijun, Chang, Sheng, Wang, Hao, He, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83
cites cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83
container_end_page 1444
container_issue 5
container_start_page 1434
container_title IEEE journal of biomedical and health informatics
container_volume 22
creator Liu, Wenhan
Zhang, Mengxin
Zhang, Yidan
Liao, Yuan
Huang, Qijun
Chang, Sheng
Wang, Hao
He, Jin
description In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.
doi_str_mv 10.1109/JBHI.2017.2771768
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2088095252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8103330</ieee_id><sourcerecordid>2088095252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn9ASJIwIuX1J3dZLN71PrRSqsg9Rw2yQRS02zdJEr_vZt-HZzLO8w888K8hFwCHQFQdff6MJmOGIVoxKIIIiFPSJ-BkD5jVJ4eelBBjwzrekldSTdS4pz0mFKKggj6ZPGBuvQXxQq9eVs2RYk688am-jFl2xSm0qX3hq3dSvNr7JeXG-vNNybVNivceFrl2qYd6j1ig9vugpzluqxxuNcB-Xx-Wown_uz9ZTq-n_kpD1Tjs0BkeY6ZylgUpmGYBBo45TTgVCc8Y4AQhVwkTFBIuY7cNlWO4k4kaMkH5Hbnu7bmu8W6iVdFnWJZ6gpNW8eMCskDASp06M0_dGla697rKCmpClnIHAU7KrWmri3m8doWK203MdC4Sz3uUo-71ON96u7meu_cJivMjheHjB1wtQMKRDyuJVDO3bd_3gSETA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088095252</pqid></control><display><type>article</type><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</creator><creatorcontrib>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</creatorcontrib><description>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2017.2771768</identifier><identifier>PMID: 29990164</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Artificial neural networks ; Convolution ; Convolutional neural network (CNN) ; Diagnostic systems ; Echocardiography ; EKG ; electrocardiogram (ECG) ; Electrocardiography ; Granulation ; Health care ; Heart ; Heart attacks ; lead asymmetric pooling (LAP) ; Medical services ; Mobile communication ; Myocardial infarction ; Myocardial Infarction (MI) ; Myocardium ; Neural networks ; Real time ; real-time application ; Real-time systems ; Segmentation ; sub 2-D convolution ; Two dimensional models</subject><ispartof>IEEE journal of biomedical and health informatics, 2018-09, Vol.22 (5), p.1434-1444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</citedby><cites>FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</cites><orcidid>0000-0002-8747-0472 ; 0000-0003-4875-5501 ; 0000-0002-0920-6908 ; 0000-0001-9679-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8103330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,54770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29990164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Mengxin</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liao, Yuan</creatorcontrib><creatorcontrib>Huang, Qijun</creatorcontrib><creatorcontrib>Chang, Sheng</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Convolutional neural network (CNN)</subject><subject>Diagnostic systems</subject><subject>Echocardiography</subject><subject>EKG</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Granulation</subject><subject>Health care</subject><subject>Heart</subject><subject>Heart attacks</subject><subject>lead asymmetric pooling (LAP)</subject><subject>Medical services</subject><subject>Mobile communication</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction (MI)</subject><subject>Myocardium</subject><subject>Neural networks</subject><subject>Real time</subject><subject>real-time application</subject><subject>Real-time systems</subject><subject>Segmentation</subject><subject>sub 2-D convolution</subject><subject>Two dimensional models</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbKn9ASJIwIuX1J3dZLN71PrRSqsg9Rw2yQRS02zdJEr_vZt-HZzLO8w888K8hFwCHQFQdff6MJmOGIVoxKIIIiFPSJ-BkD5jVJ4eelBBjwzrekldSTdS4pz0mFKKggj6ZPGBuvQXxQq9eVs2RYk688am-jFl2xSm0qX3hq3dSvNr7JeXG-vNNybVNivceFrl2qYd6j1ig9vugpzluqxxuNcB-Xx-Wown_uz9ZTq-n_kpD1Tjs0BkeY6ZylgUpmGYBBo45TTgVCc8Y4AQhVwkTFBIuY7cNlWO4k4kaMkH5Hbnu7bmu8W6iVdFnWJZ6gpNW8eMCskDASp06M0_dGla697rKCmpClnIHAU7KrWmri3m8doWK203MdC4Sz3uUo-71ON96u7meu_cJivMjheHjB1wtQMKRDyuJVDO3bd_3gSETA</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Liu, Wenhan</creator><creator>Zhang, Mengxin</creator><creator>Zhang, Yidan</creator><creator>Liao, Yuan</creator><creator>Huang, Qijun</creator><creator>Chang, Sheng</creator><creator>Wang, Hao</creator><creator>He, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8747-0472</orcidid><orcidid>https://orcid.org/0000-0003-4875-5501</orcidid><orcidid>https://orcid.org/0000-0002-0920-6908</orcidid><orcidid>https://orcid.org/0000-0001-9679-5191</orcidid></search><sort><creationdate>201809</creationdate><title>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</title><author>Liu, Wenhan ; Zhang, Mengxin ; Zhang, Yidan ; Liao, Yuan ; Huang, Qijun ; Chang, Sheng ; Wang, Hao ; He, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Convolutional neural network (CNN)</topic><topic>Diagnostic systems</topic><topic>Echocardiography</topic><topic>EKG</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Granulation</topic><topic>Health care</topic><topic>Heart</topic><topic>Heart attacks</topic><topic>lead asymmetric pooling (LAP)</topic><topic>Medical services</topic><topic>Mobile communication</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction (MI)</topic><topic>Myocardium</topic><topic>Neural networks</topic><topic>Real time</topic><topic>real-time application</topic><topic>Real-time systems</topic><topic>Segmentation</topic><topic>sub 2-D convolution</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenhan</creatorcontrib><creatorcontrib>Zhang, Mengxin</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liao, Yuan</creatorcontrib><creatorcontrib>Huang, Qijun</creatorcontrib><creatorcontrib>Chang, Sheng</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenhan</au><au>Zhang, Mengxin</au><au>Zhang, Yidan</au><au>Liao, Yuan</au><au>Huang, Qijun</au><au>Chang, Sheng</au><au>Wang, Hao</au><au>He, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2018-09</date><risdate>2018</risdate><volume>22</volume><issue>5</issue><spage>1434</spage><epage>1444</epage><pages>1434-1444</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29990164</pmid><doi>10.1109/JBHI.2017.2771768</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8747-0472</orcidid><orcidid>https://orcid.org/0000-0003-4875-5501</orcidid><orcidid>https://orcid.org/0000-0002-0920-6908</orcidid><orcidid>https://orcid.org/0000-0001-9679-5191</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2018-09, Vol.22 (5), p.1434-1444
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2088095252
source IEEE Electronic Library (IEL) Journals
subjects Algorithm design and analysis
Algorithms
Artificial neural networks
Convolution
Convolutional neural network (CNN)
Diagnostic systems
Echocardiography
EKG
electrocardiogram (ECG)
Electrocardiography
Granulation
Health care
Heart
Heart attacks
lead asymmetric pooling (LAP)
Medical services
Mobile communication
Myocardial infarction
Myocardial Infarction (MI)
Myocardium
Neural networks
Real time
real-time application
Real-time systems
Segmentation
sub 2-D convolution
Two dimensional models
title Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T23%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Multilead%20Convolutional%20Neural%20Network%20for%20Myocardial%20Infarction%20Detection&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Liu,%20Wenhan&rft.date=2018-09&rft.volume=22&rft.issue=5&rft.spage=1434&rft.epage=1444&rft.pages=1434-1444&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2017.2771768&rft_dat=%3Cproquest_cross%3E2088095252%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-246dffed9d275c55b4a13030430ab3d21e17536b2601c3a7a13c95b433c981a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088095252&rft_id=info:pmid/29990164&rft_ieee_id=8103330&rfr_iscdi=true