Loading…

Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian

In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we pro...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2000-04
Main Authors: Aschieri, Paolo, Brace, Daniel, Morariu, Bogdan, Zumino, Bruno
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aschieri, Paolo
Brace, Daniel
Morariu, Bogdan
Zumino, Bruno
description In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.
doi_str_mv 10.48550/arxiv.0003228
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088141330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088141330</sourcerecordid><originalsourceid>FETCH-proquest_journals_20881413303</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgKKpt6wutrfnRmm1JURAR5D4mvZaiM3XVqJ4-Fz1A8MGBcz7GxoJPfR0EfGbolT2nnHMlpe6wvlRKeNqXssdGVZW3Qc4XMghUnx2O5FwK7Qyc3mWJNWUfTCAiEyOEzuYY1w0hpI6gviEsL1hkxsLKkfV2NsUigb25krHXVg9ZNzVFhaMfB2yyWUfh1ruTezRY1efcNWTbdJZca-ELpbj67_UFD-FC8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088141330</pqid></control><display><type>article</type><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><source>Publicly Available Content Database</source><creator>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</creator><creatorcontrib>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</creatorcontrib><description>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0003228</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commutators ; Field strength ; Mathematical analysis ; Matrix methods ; Thermal expansion</subject><ispartof>arXiv.org, 2000-04</ispartof><rights>2000. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088141330?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Aschieri, Paolo</creatorcontrib><creatorcontrib>Brace, Daniel</creatorcontrib><creatorcontrib>Morariu, Bogdan</creatorcontrib><creatorcontrib>Zumino, Bruno</creatorcontrib><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><title>arXiv.org</title><description>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</description><subject>Commutators</subject><subject>Field strength</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAURocgKKpt6wutrfnRmm1JURAR5D4mvZaiM3XVqJ4-Fz1A8MGBcz7GxoJPfR0EfGbolT2nnHMlpe6wvlRKeNqXssdGVZW3Qc4XMghUnx2O5FwK7Qyc3mWJNWUfTCAiEyOEzuYY1w0hpI6gviEsL1hkxsLKkfV2NsUigb25krHXVg9ZNzVFhaMfB2yyWUfh1ruTezRY1efcNWTbdJZca-ELpbj67_UFD-FC8g</recordid><startdate>20000422</startdate><enddate>20000422</enddate><creator>Aschieri, Paolo</creator><creator>Brace, Daniel</creator><creator>Morariu, Bogdan</creator><creator>Zumino, Bruno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000422</creationdate><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><author>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20881413303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Commutators</topic><topic>Field strength</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Aschieri, Paolo</creatorcontrib><creatorcontrib>Brace, Daniel</creatorcontrib><creatorcontrib>Morariu, Bogdan</creatorcontrib><creatorcontrib>Zumino, Bruno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschieri, Paolo</au><au>Brace, Daniel</au><au>Morariu, Bogdan</au><au>Zumino, Bruno</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</atitle><jtitle>arXiv.org</jtitle><date>2000-04-22</date><risdate>2000</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0003228</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2000-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088141330
source Publicly Available Content Database
subjects Commutators
Field strength
Mathematical analysis
Matrix methods
Thermal expansion
title Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Proof%20of%20a%20Symmetrized%20Trace%20Conjecture%20for%20the%20Abelian%20Born-Infeld%20Lagrangian&rft.jtitle=arXiv.org&rft.au=Aschieri,%20Paolo&rft.date=2000-04-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0003228&rft_dat=%3Cproquest%3E2088141330%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20881413303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088141330&rft_id=info:pmid/&rfr_iscdi=true