Loading…
Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian
In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we pro...
Saved in:
Published in: | arXiv.org 2000-04 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Aschieri, Paolo Brace, Daniel Morariu, Bogdan Zumino, Bruno |
description | In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators. |
doi_str_mv | 10.48550/arxiv.0003228 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088141330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088141330</sourcerecordid><originalsourceid>FETCH-proquest_journals_20881413303</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgKKpt6wutrfnRmm1JURAR5D4mvZaiM3XVqJ4-Fz1A8MGBcz7GxoJPfR0EfGbolT2nnHMlpe6wvlRKeNqXssdGVZW3Qc4XMghUnx2O5FwK7Qyc3mWJNWUfTCAiEyOEzuYY1w0hpI6gviEsL1hkxsLKkfV2NsUigb25krHXVg9ZNzVFhaMfB2yyWUfh1ruTezRY1efcNWTbdJZca-ELpbj67_UFD-FC8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088141330</pqid></control><display><type>article</type><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><source>Publicly Available Content Database</source><creator>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</creator><creatorcontrib>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</creatorcontrib><description>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0003228</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commutators ; Field strength ; Mathematical analysis ; Matrix methods ; Thermal expansion</subject><ispartof>arXiv.org, 2000-04</ispartof><rights>2000. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088141330?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Aschieri, Paolo</creatorcontrib><creatorcontrib>Brace, Daniel</creatorcontrib><creatorcontrib>Morariu, Bogdan</creatorcontrib><creatorcontrib>Zumino, Bruno</creatorcontrib><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><title>arXiv.org</title><description>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</description><subject>Commutators</subject><subject>Field strength</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNis0KgkAURocgKKpt6wutrfnRmm1JURAR5D4mvZaiM3XVqJ4-Fz1A8MGBcz7GxoJPfR0EfGbolT2nnHMlpe6wvlRKeNqXssdGVZW3Qc4XMghUnx2O5FwK7Qyc3mWJNWUfTCAiEyOEzuYY1w0hpI6gviEsL1hkxsLKkfV2NsUigb25krHXVg9ZNzVFhaMfB2yyWUfh1ruTezRY1efcNWTbdJZca-ELpbj67_UFD-FC8g</recordid><startdate>20000422</startdate><enddate>20000422</enddate><creator>Aschieri, Paolo</creator><creator>Brace, Daniel</creator><creator>Morariu, Bogdan</creator><creator>Zumino, Bruno</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20000422</creationdate><title>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</title><author>Aschieri, Paolo ; Brace, Daniel ; Morariu, Bogdan ; Zumino, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20881413303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Commutators</topic><topic>Field strength</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Aschieri, Paolo</creatorcontrib><creatorcontrib>Brace, Daniel</creatorcontrib><creatorcontrib>Morariu, Bogdan</creatorcontrib><creatorcontrib>Zumino, Bruno</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aschieri, Paolo</au><au>Brace, Daniel</au><au>Morariu, Bogdan</au><au>Zumino, Bruno</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian</atitle><jtitle>arXiv.org</jtitle><date>2000-04-22</date><risdate>2000</risdate><eissn>2331-8422</eissn><abstract>In this paper we prove a conjecture regarding the form of the Born-Infeld Lagrangian with a U(1)^2n gauge group after the elimination of the auxiliary fields. We show that the Lagrangian can be written as a symmetrized trace of Lorentz invariant bilinears in the field strength. More generally we prove a theorem regarding certain solutions of unilateral matrix equations of arbitrary order. For solutions which have perturbative expansions in the matrix coefficients, the solution and all its positive powers are sums of terms which are symmetrized in all the matrix coefficients and of terms which are commutators.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0003228</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2000-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088141330 |
source | Publicly Available Content Database |
subjects | Commutators Field strength Mathematical analysis Matrix methods Thermal expansion |
title | Proof of a Symmetrized Trace Conjecture for the Abelian Born-Infeld Lagrangian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Proof%20of%20a%20Symmetrized%20Trace%20Conjecture%20for%20the%20Abelian%20Born-Infeld%20Lagrangian&rft.jtitle=arXiv.org&rft.au=Aschieri,%20Paolo&rft.date=2000-04-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0003228&rft_dat=%3Cproquest%3E2088141330%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20881413303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088141330&rft_id=info:pmid/&rfr_iscdi=true |