Loading…

PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials

We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2009-07
Main Authors: Dorey, Patrick, Dunning, Clare, Lishman, Anna, Tateo, Roberto
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dorey, Patrick
Dunning, Clare
Lishman, Anna
Tateo, Roberto
description We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.
doi_str_mv 10.48550/arxiv.0907.3673
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088246652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088246652</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53</originalsourceid><addsrcrecordid>eNotjjtrwzAYAEWh0JBm7yjo7FRv22MJfUGgHbx1CJ_kT6lTW3Ituzj_voZmuuU4jpA7zraq0Jo9wDA3v1tWsnwrTS6vyEpIybNCCXFDNimdGGPC5EJruSKfHxVN567DcThTOyB8N-FIIdQUZ4f92MQALe1jE8ZEfRwoUNdCSjR62oSv2MUjBoxToi52fYvz4o4YxgbadEuu_QLcXLgm1fNTtXvN9u8vb7vHfQaai8zK3OVFbQ1aA86qUhhgYIRxjHt0qBTjrvbaIS-NtwAWlNfKIXKD0mu5Jvf_2X6IPxOm8XCK07Bsp4NgRSGUMVrIP-W3Vs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088246652</pqid></control><display><type>article</type><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><source>Publicly Available Content Database</source><creator>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</creator><creatorcontrib>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</creatorcontrib><description>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0907.3673</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Eigenvalues ; Hamiltonian functions ; Mapping ; Mathematical models ; Phase diagrams ; Phase transitions ; Polynomials</subject><ispartof>arXiv.org, 2009-07</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088246652?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dorey, Patrick</creatorcontrib><creatorcontrib>Dunning, Clare</creatorcontrib><creatorcontrib>Lishman, Anna</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><title>arXiv.org</title><description>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</description><subject>Broken symmetry</subject><subject>Eigenvalues</subject><subject>Hamiltonian functions</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjjtrwzAYAEWh0JBm7yjo7FRv22MJfUGgHbx1CJ_kT6lTW3Ituzj_voZmuuU4jpA7zraq0Jo9wDA3v1tWsnwrTS6vyEpIybNCCXFDNimdGGPC5EJruSKfHxVN567DcThTOyB8N-FIIdQUZ4f92MQALe1jE8ZEfRwoUNdCSjR62oSv2MUjBoxToi52fYvz4o4YxgbadEuu_QLcXLgm1fNTtXvN9u8vb7vHfQaai8zK3OVFbQ1aA86qUhhgYIRxjHt0qBTjrvbaIS-NtwAWlNfKIXKD0mu5Jvf_2X6IPxOm8XCK07Bsp4NgRSGUMVrIP-W3Vs4</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Dorey, Patrick</creator><creator>Dunning, Clare</creator><creator>Lishman, Anna</creator><creator>Tateo, Roberto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090721</creationdate><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><author>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Broken symmetry</topic><topic>Eigenvalues</topic><topic>Hamiltonian functions</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dorey, Patrick</creatorcontrib><creatorcontrib>Dunning, Clare</creatorcontrib><creatorcontrib>Lishman, Anna</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorey, Patrick</au><au>Dunning, Clare</au><au>Lishman, Anna</au><au>Tateo, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</atitle><jtitle>arXiv.org</jtitle><date>2009-07-21</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0907.3673</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2088246652
source Publicly Available Content Database
subjects Broken symmetry
Eigenvalues
Hamiltonian functions
Mapping
Mathematical models
Phase diagrams
Phase transitions
Polynomials
title PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PT%20symmetry%20breaking%20and%20exceptional%20points%20for%20a%20class%20of%20inhomogeneous%20complex%20potentials&rft.jtitle=arXiv.org&rft.au=Dorey,%20Patrick&rft.date=2009-07-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0907.3673&rft_dat=%3Cproquest%3E2088246652%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088246652&rft_id=info:pmid/&rfr_iscdi=true