Loading…
PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials
We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the...
Saved in:
Published in: | arXiv.org 2009-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dorey, Patrick Dunning, Clare Lishman, Anna Tateo, Roberto |
description | We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified. |
doi_str_mv | 10.48550/arxiv.0907.3673 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2088246652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088246652</sourcerecordid><originalsourceid>FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53</originalsourceid><addsrcrecordid>eNotjjtrwzAYAEWh0JBm7yjo7FRv22MJfUGgHbx1CJ_kT6lTW3Ituzj_voZmuuU4jpA7zraq0Jo9wDA3v1tWsnwrTS6vyEpIybNCCXFDNimdGGPC5EJruSKfHxVN567DcThTOyB8N-FIIdQUZ4f92MQALe1jE8ZEfRwoUNdCSjR62oSv2MUjBoxToi52fYvz4o4YxgbadEuu_QLcXLgm1fNTtXvN9u8vb7vHfQaai8zK3OVFbQ1aA86qUhhgYIRxjHt0qBTjrvbaIS-NtwAWlNfKIXKD0mu5Jvf_2X6IPxOm8XCK07Bsp4NgRSGUMVrIP-W3Vs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2088246652</pqid></control><display><type>article</type><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><source>Publicly Available Content Database</source><creator>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</creator><creatorcontrib>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</creatorcontrib><description>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0907.3673</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broken symmetry ; Eigenvalues ; Hamiltonian functions ; Mapping ; Mathematical models ; Phase diagrams ; Phase transitions ; Polynomials</subject><ispartof>arXiv.org, 2009-07</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2088246652?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Dorey, Patrick</creatorcontrib><creatorcontrib>Dunning, Clare</creatorcontrib><creatorcontrib>Lishman, Anna</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><title>arXiv.org</title><description>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</description><subject>Broken symmetry</subject><subject>Eigenvalues</subject><subject>Hamiltonian functions</subject><subject>Mapping</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjjtrwzAYAEWh0JBm7yjo7FRv22MJfUGgHbx1CJ_kT6lTW3Ituzj_voZmuuU4jpA7zraq0Jo9wDA3v1tWsnwrTS6vyEpIybNCCXFDNimdGGPC5EJruSKfHxVN567DcThTOyB8N-FIIdQUZ4f92MQALe1jE8ZEfRwoUNdCSjR62oSv2MUjBoxToi52fYvz4o4YxgbadEuu_QLcXLgm1fNTtXvN9u8vb7vHfQaai8zK3OVFbQ1aA86qUhhgYIRxjHt0qBTjrvbaIS-NtwAWlNfKIXKD0mu5Jvf_2X6IPxOm8XCK07Bsp4NgRSGUMVrIP-W3Vs4</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Dorey, Patrick</creator><creator>Dunning, Clare</creator><creator>Lishman, Anna</creator><creator>Tateo, Roberto</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20090721</creationdate><title>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</title><author>Dorey, Patrick ; Dunning, Clare ; Lishman, Anna ; Tateo, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Broken symmetry</topic><topic>Eigenvalues</topic><topic>Hamiltonian functions</topic><topic>Mapping</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dorey, Patrick</creatorcontrib><creatorcontrib>Dunning, Clare</creatorcontrib><creatorcontrib>Lishman, Anna</creatorcontrib><creatorcontrib>Tateo, Roberto</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorey, Patrick</au><au>Dunning, Clare</au><au>Lishman, Anna</au><au>Tateo, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials</atitle><jtitle>arXiv.org</jtitle><date>2009-07-21</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>We study a three-parameter family of PT-symmetric Hamiltonians, related via the ODE/IM correspondence to the Perk-Schultz models. We show that real eigenvalues merge and become complex at quadratic and cubic exceptional points, and explore the corresponding Jordon block structures by exploiting the quasi-exact solvability of a subset of the models. The mapping of the phase diagram is completed using a combination of numerical, analytical and perturbative approaches. Among other things this reveals some novel properties of the Bender-Dunne polynomials, and gives a new insight into a phase transition to infinitely-many complex eigenvalues that was first observed by Bender and Boettcher. A new exactly-solvable limit, the inhomogeneous complex square well, is also identified.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0907.3673</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2009-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2088246652 |
source | Publicly Available Content Database |
subjects | Broken symmetry Eigenvalues Hamiltonian functions Mapping Mathematical models Phase diagrams Phase transitions Polynomials |
title | PT symmetry breaking and exceptional points for a class of inhomogeneous complex potentials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PT%20symmetry%20breaking%20and%20exceptional%20points%20for%20a%20class%20of%20inhomogeneous%20complex%20potentials&rft.jtitle=arXiv.org&rft.au=Dorey,%20Patrick&rft.date=2009-07-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0907.3673&rft_dat=%3Cproquest%3E2088246652%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a512-b37c78db6eb6acb4926a0a626c01fece4401cdf5ce196fbaaba4f54cee16e3f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088246652&rft_id=info:pmid/&rfr_iscdi=true |