Loading…

Hybrid BFGS-ZMRI methods with global convergence properties

In this paper, we focus on the steepest descent and quasi-Newton method in solving unconstrained optimization problem. Therefore, we develop a new search direction for hybrid BFGS-ZMRI method with global convergence properties. Based on the numerical result, our method shows significant improvement...

Full description

Saved in:
Bibliographic Details
Main Authors: Abidin, Zubai’ah Zainal, ‘Aini, Nurul, Husin, Siti Farhana, Rivaie, Mohd, Mamat, Mustafa
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 1974
creator Abidin, Zubai’ah Zainal
‘Aini, Nurul
Husin, Siti Farhana
Rivaie, Mohd
Mamat, Mustafa
description In this paper, we focus on the steepest descent and quasi-Newton method in solving unconstrained optimization problem. Therefore, we develop a new search direction for hybrid BFGS-ZMRI method with global convergence properties. Based on the numerical result, our method shows significant improvement in the number of iteration and CPU time.
doi_str_mv 10.1063/1.5041570
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2088313741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088313741</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-d34693cfde79e9dc4d4bdd45413776aa5529b248b3a6f9132efcc053c1d49ae73</originalsourceid><addsrcrecordid>eNotkFtLwzAYhoMoWKsX_oOCd0JnvhyaBq90uANMBA8g3oQ0SbeOra1JpuzfW9mu3puX54EHoWvAI8AFvYMRxwy4wCcoAc4hFwUUpyjBWLKcMPp5ji5CWGNMpBBlgu5n-8o3NnucTN_yr-fXebZ1cdXZkP02cZUtN12lN5np2h_nl641Lut91zsfGxcu0VmtN8FdHTdFH5On9_EsX7xM5-OHRd4TKGNuKSskNbV1QjppDbOsspZxBlSIQmvOiawIKyuqi1oCJa42BnNqwDKpnaApujlwB_X3zoWo1t3Ot4NSEVyWdOAMrBTdHl7BNFHHpmtV75ut9nsFWP3HUaCOcegfSIZVOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2088313741</pqid></control><display><type>conference_proceeding</type><title>Hybrid BFGS-ZMRI methods with global convergence properties</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Abidin, Zubai’ah Zainal ; ‘Aini, Nurul ; Husin, Siti Farhana ; Rivaie, Mohd ; Mamat, Mustafa</creator><contributor>Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</contributor><creatorcontrib>Abidin, Zubai’ah Zainal ; ‘Aini, Nurul ; Husin, Siti Farhana ; Rivaie, Mohd ; Mamat, Mustafa ; Mohamed, Mesliza ; Sharif, Sarifah Radiah ; Rahman, Wan Eny Zarina Wan Abdul ; Akbarally, Ajab Bai ; Jaffar, Maheran Mohd ; Mohamad, Daud ; Maidinsah, Hamidah</creatorcontrib><description>In this paper, we focus on the steepest descent and quasi-Newton method in solving unconstrained optimization problem. Therefore, we develop a new search direction for hybrid BFGS-ZMRI method with global convergence properties. Based on the numerical result, our method shows significant improvement in the number of iteration and CPU time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5041570</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Iterative methods ; Nonlinear programming ; Quasi Newton methods</subject><ispartof>AIP Conference Proceedings, 2018, Vol.1974 (1)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Mohamed, Mesliza</contributor><contributor>Sharif, Sarifah Radiah</contributor><contributor>Rahman, Wan Eny Zarina Wan Abdul</contributor><contributor>Akbarally, Ajab Bai</contributor><contributor>Jaffar, Maheran Mohd</contributor><contributor>Mohamad, Daud</contributor><contributor>Maidinsah, Hamidah</contributor><creatorcontrib>Abidin, Zubai’ah Zainal</creatorcontrib><creatorcontrib>‘Aini, Nurul</creatorcontrib><creatorcontrib>Husin, Siti Farhana</creatorcontrib><creatorcontrib>Rivaie, Mohd</creatorcontrib><creatorcontrib>Mamat, Mustafa</creatorcontrib><title>Hybrid BFGS-ZMRI methods with global convergence properties</title><title>AIP Conference Proceedings</title><description>In this paper, we focus on the steepest descent and quasi-Newton method in solving unconstrained optimization problem. Therefore, we develop a new search direction for hybrid BFGS-ZMRI method with global convergence properties. Based on the numerical result, our method shows significant improvement in the number of iteration and CPU time.</description><subject>Convergence</subject><subject>Iterative methods</subject><subject>Nonlinear programming</subject><subject>Quasi Newton methods</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkFtLwzAYhoMoWKsX_oOCd0JnvhyaBq90uANMBA8g3oQ0SbeOra1JpuzfW9mu3puX54EHoWvAI8AFvYMRxwy4wCcoAc4hFwUUpyjBWLKcMPp5ji5CWGNMpBBlgu5n-8o3NnucTN_yr-fXebZ1cdXZkP02cZUtN12lN5np2h_nl641Lut91zsfGxcu0VmtN8FdHTdFH5On9_EsX7xM5-OHRd4TKGNuKSskNbV1QjppDbOsspZxBlSIQmvOiawIKyuqi1oCJa42BnNqwDKpnaApujlwB_X3zoWo1t3Ot4NSEVyWdOAMrBTdHl7BNFHHpmtV75ut9nsFWP3HUaCOcegfSIZVOQ</recordid><startdate>20180628</startdate><enddate>20180628</enddate><creator>Abidin, Zubai’ah Zainal</creator><creator>‘Aini, Nurul</creator><creator>Husin, Siti Farhana</creator><creator>Rivaie, Mohd</creator><creator>Mamat, Mustafa</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180628</creationdate><title>Hybrid BFGS-ZMRI methods with global convergence properties</title><author>Abidin, Zubai’ah Zainal ; ‘Aini, Nurul ; Husin, Siti Farhana ; Rivaie, Mohd ; Mamat, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-d34693cfde79e9dc4d4bdd45413776aa5529b248b3a6f9132efcc053c1d49ae73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convergence</topic><topic>Iterative methods</topic><topic>Nonlinear programming</topic><topic>Quasi Newton methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abidin, Zubai’ah Zainal</creatorcontrib><creatorcontrib>‘Aini, Nurul</creatorcontrib><creatorcontrib>Husin, Siti Farhana</creatorcontrib><creatorcontrib>Rivaie, Mohd</creatorcontrib><creatorcontrib>Mamat, Mustafa</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abidin, Zubai’ah Zainal</au><au>‘Aini, Nurul</au><au>Husin, Siti Farhana</au><au>Rivaie, Mohd</au><au>Mamat, Mustafa</au><au>Mohamed, Mesliza</au><au>Sharif, Sarifah Radiah</au><au>Rahman, Wan Eny Zarina Wan Abdul</au><au>Akbarally, Ajab Bai</au><au>Jaffar, Maheran Mohd</au><au>Mohamad, Daud</au><au>Maidinsah, Hamidah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hybrid BFGS-ZMRI methods with global convergence properties</atitle><btitle>AIP Conference Proceedings</btitle><date>2018-06-28</date><risdate>2018</risdate><volume>1974</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we focus on the steepest descent and quasi-Newton method in solving unconstrained optimization problem. Therefore, we develop a new search direction for hybrid BFGS-ZMRI method with global convergence properties. Based on the numerical result, our method shows significant improvement in the number of iteration and CPU time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5041570</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2018, Vol.1974 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2088313741
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Convergence
Iterative methods
Nonlinear programming
Quasi Newton methods
title Hybrid BFGS-ZMRI methods with global convergence properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hybrid%20BFGS-ZMRI%20methods%20with%20global%20convergence%20properties&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Abidin,%20Zubai%E2%80%99ah%20Zainal&rft.date=2018-06-28&rft.volume=1974&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5041570&rft_dat=%3Cproquest_scita%3E2088313741%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p218t-d34693cfde79e9dc4d4bdd45413776aa5529b248b3a6f9132efcc053c1d49ae73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2088313741&rft_id=info:pmid/&rfr_iscdi=true